1
0

foobar rgb underglow

This commit is contained in:
di0ib 2017-09-04 20:29:55 -10:00
parent 02054bf45f
commit 21d8a47e4d
27 changed files with 3584 additions and 0 deletions

View File

@ -0,0 +1,173 @@
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device.
# Please customize your programmer settings(PROGRAM_CMD)
#
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
# make dfu = Download the hex file to the device, using dfu-programmer (must
# have dfu-programmer installed).
#
# make flip = Download the hex file to the device, using Atmel FLIP (must
# have Atmel FLIP installed).
#
# make dfu-ee = Download the eeprom file to the device, using dfu-programmer
# (must have dfu-programmer installed).
#
# make flip-ee = Download the eeprom file to the device, using Atmel FLIP
# (must have Atmel FLIP installed).
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# Target file name (without extension).
TARGET = foobar
# Directory common source filess exist
TMK_DIR = ../../tmk_core
# Directory keyboard dependent files exist
TARGET_DIR = .
# project specific files
SRC = matrix.c \
i2c.c \
serial.c \
split-util.c \
led.c \
rgblight.c \
light_ws2812.c
CONFIG_H = config.h
# MCU name
MCU = atmega32u4
COM_PORT=/dev/ttyACM0
PROGRAM_CMD=sleep 3; avrdude -p atmega32u4 -P $(COM_PORT) -c avr109 -U flash:w:$(TARGET).hex
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Changes some bootmagic settings for when the space is on the left half
OPT_DEFS += -DSPACE_ON_LEFT_HALF
# # Use I2C for communication between the halves of the keyboard
# OPT_DEFS += -DUSE_I2C
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE = yes # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = yes # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
SLEEP_LED_ENABLE = yes # Breathing sleep LED during USB suspend
NKRO_ENABLE = yes # USB Nkey Rollover
ACTIONMAP_ENABLE = yes # Use 16bit action codes in keymap instead of 8bit keycodes
ifdef ACTIONMAP_ENABLE
KEYMAP_FILE = actionmap
else
KEYMAP_FILE = keymap
SRC := keymap_common.c $(SRC)
endif
ifdef KEYMAP
SRC := $(KEYMAP_FILE)_$(KEYMAP).c $(SRC)
else
SRC := $(KEYMAP_FILE)_plain.c $(SRC)
endif
#PS2_MOUSE_ENABLE = yes # PS/2 mouse(TrackPoint) support
#PS2_USE_BUSYWAIT = yes # uses primitive reference code
#PS2_USE_INT = yes # uses external interrupt for falling edge of PS/2 clock pin
#PS2_USE_USART = yes # uses hardware USART engine for PS/2 signal receive(recomened)
# Search Path
VPATH += $(TARGET_DIR)
VPATH += $(TMK_DIR)
# Un comment this line if you want to use pjrc protocol
# include $(TMK_DIR)/protocol/pjrc.mk
include $(TMK_DIR)/protocol/lufa.mk
include $(TMK_DIR)/common.mk
include $(TMK_DIR)/rules.mk
debug-on: EXTRAFLAGS += -DDEBUG -DDEBUG_ACTION
debug-on: all
debug-off: EXTRAFLAGS += -DNO_DEBUG -DNO_PRINT
debug-off: OPT_DEFS := $(filter-out -DCONSOLE_ENABLE,$(OPT_DEFS))
debug-off: all
eeprom-left:
sleep 3; avrdude -p atmega32u4 -P $(COM_PORT) -c avr109 -U eeprom:w:eeprom-lefthand.eep
eeprom-right:
sleep 3; avrdude -p atmega32u4 -P $(COM_PORT) -c avr109 -U eeprom:w:eeprom-righthand.eep

View File

@ -0,0 +1,99 @@
This is a modification of the TMK firmware by ahtn found here https://github.com/ahtn/tmk_keyboard/tree/master/keyboard/split_keyboard
Custom split keyboard firmware
======
Split keyboard firmware for Arduino Pro Micro or other ATmega32u4
based boards.
Features
--------
Some features supported by the firmware:
* Either half can connect to the computer via USB, or both halves can be used
independently.
* You only need 3 wires to connect the two halves. Two for VCC and GND and one
for serial communication.
* Optional support for I2C connection between the two halves if for some
reason you require a faster connection between the two halves. Note this
requires an extra wire between halves and pull-up resistors on the data lines.
Required Hardware
-----------------
Apart from diodes and key switches for the keyboard matrix in each half, you
will need:
* 2 Arduino Pro Micro's. You can find theses on aliexpress for ≈3.50USD each.
* 2 TRS sockets
* 1 TRS cable.
Alternatively, you can use any sort of cable and socket that has at least 3
wires. If you want to use I2C to communicate between halves, you will need a
cable with at least 4 wires and 2x 4.7kΩ pull-up resistors
Wiring
------
The 3 wires of the TRS cable need to connect GND, VCC, and digital pin 3 (i.e.
`PD0` on the ATmega32u4) between the two Pro Micros.
Then wire your key matrix to any of the remaining 17 IO pins of the pro micro
and modify the `MATRIX_COL_PINS` and `MATRIX_ROW_PINS` in `config.h` accordingly.
The wiring for serial:
![serial wiring](imgs/split-keyboard-serial-schematic.png)
The wiring for i2c:
![i2c wiring](imgs/split-keyboard-i2c-schematic.png)
The pull-up resistors may be placed on either half. It is also possible
to use 4 resistors and have the pull-ups in both halves, but this is
unnecessary in simple use cases.
Notes on Software Configuration
-------------------------------
Configuring the firmware is similar to any other TMK project. One thing
to note is that `MATIX_ROWS` in `config.h` is the total number of rows between
the two halves, i.e. if your split keyboard has 4 rows in each half, then
`MATRIX_ROWS=8`.
Also the current implementation assumes a maximum of 8 columns, but it would
not be very difficult to adapt it to support more if required.
Flashing
--------
Before you go to flash the program memory for the first time, you will need to
EEPROM for the left and right halves. The EEPROM is used to store whether the
half is left handed or right handed. This makes it so that the same firmware
file will run on both hands instead of having to flash left and right handed
versions of the firmware to each half. To flash the EEPROM file for the left
half run:
```
make eeprom-left
```
and similarly for right half
```
make eeprom-right
```
After you have flashed the EEPROM for the first time, you then need to program
the flash memory:
```
make program
```
Note that you need to program both halves, but you have the option of using
different keymaps for each half. You could program the left half with a QWERTY
layout and the right half with a Colemak layout. Then if you connect the left
half to a computer by USB the keyboard will use QWERTY and Colemak when the
right half is connected.

View File

@ -0,0 +1,35 @@
#ifndef ACTIONMAP_COMMON_H
#define ACTIONMAP_COMMON_H
#include "rgblight.h"
enum function_id {
RGBLED_TOGGLE,
RGBLED_STEP_MODE,
RGBLED_INCREASE_HUE,
RGBLED_DECREASE_HUE,
RGBLED_INCREASE_SAT,
RGBLED_DECREASE_SAT,
RGBLED_INCREASE_VAL,
RGBLED_DECREASE_VAL,
};
#define ACTIONMAP( \
K00, K01, K02, K03, K04, \
K10, K11, K12, K13, K14, \
K20, K21, K22, K23, K24, \
\
K30, K31, K32, K33, K34, \
K40, K41, K42, K43, K44, \
K50, K51, K52, K53, K54 \
) { \
{ AC_##K00, AC_##K01, AC_##K02, AC_##K03, AC_##K04 }, \
{ AC_##K10, AC_##K11, AC_##K12, AC_##K13, AC_##K14 }, \
{ AC_##K20, AC_##K21, AC_##K22, AC_##K23, AC_##K24 }, \
\
{ AC_##K34, AC_##K33, AC_##K32, AC_##K31, AC_##K30 }, \
{ AC_##K44, AC_##K43, AC_##K42, AC_##K41, AC_##K40 }, \
{ AC_##K54, AC_##K53, AC_##K52, AC_##K51, AC_##K50 } \
}
#endif

View File

@ -0,0 +1,149 @@
#include "actionmap.h"
#include "action_code.h"
#include "actionmap_common.h"
#include "rgblight.h"
/*
* Actions
*/
#define AC_BLD ACTION_BACKLIGHT_DECREASE()
#define AC_BLI ACTION_BACKLIGHT_INCREASE()
#define AC_TL1 ACTION_LAYER_TAP_KEY(1, KC_SPACE)
#define AC_TL2 ACTION_LAYER_TAP_KEY(2, KC_BSPACE)
#define AC_TL3 ACTION_LAYER_TAP_KEY(3, KC_C)
#define AC_TL4 ACTION_LAYER_TAP_KEY(4, KC_V)
#define AC_TL5 ACTION_LAYER_TAP_KEY(5, KC_B)
#define AC_TM1 ACTION_MODS_TAP_KEY(MOD_RSFT, KC_ENT)
#define AC_TM2 ACTION_MODS_TAP_KEY(MOD_LCTL, KC_Z)
#define AC_TM3 ACTION_MODS_TAP_KEY(MOD_LALT, KC_X)
#define AC_TM4 ACTION_MODS_TAP_KEY(MOD_RALT, KC_N)
#define AC_TM5 ACTION_MODS_TAP_KEY(MOD_RCTL, KC_M)
#define AC_S01 ACTION_MODS_KEY(MOD_LSFT, KC_1)
#define AC_S02 ACTION_MODS_KEY(MOD_LSFT, KC_2)
#define AC_S03 ACTION_MODS_KEY(MOD_LSFT, KC_3)
#define AC_S04 ACTION_MODS_KEY(MOD_LSFT, KC_4)
#define AC_S05 ACTION_MODS_KEY(MOD_LSFT, KC_5)
#define AC_S06 ACTION_MODS_KEY(MOD_LSFT, KC_6)
#define AC_S07 ACTION_MODS_KEY(MOD_LSFT, KC_7)
#define AC_S08 ACTION_MODS_KEY(MOD_LSFT, KC_8)
#define AC_S09 ACTION_MODS_KEY(MOD_LSFT, KC_9)
#define AC_S10 ACTION_MODS_KEY(MOD_LSFT, KC_0)
#define AC_S11 ACTION_MODS_KEY(MOD_LSFT, KC_MINS)
#define AC_S12 ACTION_MODS_KEY(MOD_LSFT, KC_EQL)
#define AC_S13 ACTION_MODS_KEY(MOD_LSFT, KC_LBRC)
#define AC_S14 ACTION_MODS_KEY(MOD_LSFT, KC_RBRC)
#define AC_S15 ACTION_MODS_KEY(MOD_LSFT, KC_BSLS)
#define AC_S16 ACTION_MODS_KEY(MOD_LSFT, KC_COMM)
#define AC_S17 ACTION_MODS_KEY(MOD_LSFT, KC_DOT)
#define AC_S18 ACTION_MODS_KEY(MOD_LSFT, KC_SLSH)
#define AC_S19 ACTION_MODS_KEY(MOD_LSFT, KC_SCLN)
#define AC_S20 ACTION_MODS_KEY(MOD_LSFT, KC_QUOT)
#define AC_L01 ACTION_FUNCTION(RGBLED_TOGGLE)
#define AC_L02 ACTION_FUNCTION(RGBLED_STEP_MODE)
#define AC_L03 ACTION_FUNCTION(RGBLED_INCREASE_HUE)
#define AC_L04 ACTION_FUNCTION(RGBLED_DECREASE_HUE)
#define AC_L05 ACTION_FUNCTION(RGBLED_INCREASE_SAT)
#define AC_L06 ACTION_FUNCTION(RGBLED_DECREASE_SAT)
#define AC_L07 ACTION_FUNCTION(RGBLED_INCREASE_VAL)
#define AC_L08 ACTION_FUNCTION(RGBLED_DECREASE_VAL)
const action_t PROGMEM actionmaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = ACTIONMAP(
Q, W, E, R, T,
A, S, D, F, G,
TM2, TM3, TL3, TL4, TL2,
Y, U, I, O, P,
H, J, K, L, ESC,
TL1, TL5, TM4, TM5, TM1),
[1] = ACTIONMAP(
1, 2, 3, 4, 5,
F1, F2, F3, F4, F5,
TRNS, TRNS, TRNS, TRNS, DEL,
6, 7, 8, 9, 0,
F6, F7, F8, F9, F10,
TRNS, TRNS, TRNS, TRNS, TRNS),
[2] = ACTIONMAP(
S01, S02, S03, S04, S05,
F11, F12, TRNS, TRNS, TRNS,
TRNS, TRNS, TRNS, TRNS, TRNS,
S06, S07, S08, S09, S10,
TRNS, TRNS, TRNS, TRNS, GRV,
TRNS, TRNS, TRNS, TRNS, TRNS),
[3] = ACTIONMAP(
TRNS, TRNS, TRNS, TRNS, TRNS,
TAB, TRNS, TRNS, TRNS, TRNS,
TRNS, TRNS, TRNS, TRNS, TRNS,
MINS, EQL, LBRC, RBRC, BSLS,
COMM, DOT, SLSH, SCLN, QUOT,
TRNS, LEFT, DOWN, UP, RGHT),
[4] = ACTIONMAP(
TRNS, TRNS, TRNS, TRNS, TRNS,
TAB, TRNS, TRNS, TRNS, TRNS,
TRNS, TRNS, TRNS, TRNS, TRNS,
S11, S12, S13, S14, S15,
S16, S17, S18, S19, S20,
TRNS, HOME, PGDN, PGUP, END),
[5] = ACTIONMAP(
CALC, WHOM, MAIL, MYCM, TRNS,
L01, L02, L03, L04, L05,
TRNS, TRNS, TRNS, TRNS, BTLD,
TRNS, TRNS, TRNS, TRNS, PSCR,
L06, L07, L08, BLD, BLI,
TRNS, TRNS, TRNS, TRNS, TRNS),
};
void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
switch (id) {
case RGBLED_TOGGLE:
if (record->event.pressed) {
rgblight_toggle();
}
break;
case RGBLED_INCREASE_HUE:
if (record->event.pressed) {
rgblight_increase_hue();
}
break;
case RGBLED_DECREASE_HUE:
if (record->event.pressed) {
rgblight_decrease_hue();
}
break;
case RGBLED_INCREASE_SAT:
if (record->event.pressed) {
rgblight_increase_sat();
}
break;
case RGBLED_DECREASE_SAT:
if (record->event.pressed) {
rgblight_decrease_sat();
}
break;
case RGBLED_INCREASE_VAL:
if (record->event.pressed) {
rgblight_increase_val();
}
break;
case RGBLED_DECREASE_VAL:
if (record->event.pressed) {
rgblight_decrease_val();
}
break;
case RGBLED_STEP_MODE:
if (record->event.pressed) {
rgblight_step();
}
break;
}
}

View File

@ -0,0 +1,129 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_H
#define CONFIG_H
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x0A0C
#define DEVICE_VER 0x0F00
#define MANUFACTURER di0ib
#define PRODUCT The foobar Keyboard
#define DESCRIPTION A split 30 key keyboard
/* key matrix size */
#define ROWS_PER_HAND 3
#define MATRIX_COLS 5
#define MATRIX_ROWS ROWS_PER_HAND*2
#define MATRIX_COL_PINS { F6, F7, B1, B3, B2 }
#define MATRIX_ROW_PINS { D7, E6, B4 }
/* use i2c instead of serial */
//#define USE_I2C
//#define I2C_WRITE_TEST_CODE
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
/* Set 0 if debouncing isn't needed */
#define DEBOUNCE 5
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
//#define NO_DEBUG
/* disable print */
//#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LCTL) | MOD_BIT(KC_LALT) | MOD_BIT(KC_LGUI)) \
)
/* ws2812 RGB LED */
#define ws2812_PORTREG PORTB
#define ws2812_DDRREG DDRB
#define ws2812_pin PB6
#define RGBLED_NUM 4 // Number of LEDs
#ifndef RGBLIGHT_HUE_STEP
#define RGBLIGHT_HUE_STEP 10
#endif
#ifndef RGBLIGHT_SAT_STEP
#define RGBLIGHT_SAT_STEP 17
#endif
#ifndef RGBLIGHT_VAL_STEP
#define RGBLIGHT_VAL_STEP 17
#endif
/* boot magic key */
#define BOOTMAGIC_KEY_SALT KC_Q
#ifdef SPACE_ON_LEFT_HALF
#define BOOTMAGIC_KEY_DEFAULT_LAYER_0 KC_Z
#define BOOTMAGIC_KEY_DEFAULT_LAYER_1 KC_X
#define BOOTMAGIC_KEY_DEFAULT_LAYER_2 KC_C
#define BOOTMAGIC_HOST_NKRO KC_V
#else
#define BOOTMAGIC_KEY_DEFAULT_LAYER_0 KC_M
#define BOOTMAGIC_KEY_DEFAULT_LAYER_1 KC_COMM
#define BOOTMAGIC_KEY_DEFAULT_LAYER_2 KC_DOT
#define BOOTMAGIC_HOST_NKRO KC_N
#endif
/* Mousekey settings */
#define MOUSEKEY_MOVE_MAX 127 // default 127
#define MOUSEKEY_WHEEL_MAX 127 // default 127
#define MOUSEKEY_MOVE_DELTA 5 // default 5
#define MOUSEKEY_WHEEL_DELTA 1 // default 1
#define MOUSEKEY_DELAY 300 // default 300
#define MOUSEKEY_INTERVAL 50 // default 50
#define MOUSEKEY_MAX_SPEED 5 // default 10
#define MOUSEKEY_TIME_TO_MAX 10 // default 20
#define MOUSEKEY_WHEEL_MAX_SPEED 8 // default 8
#define MOUSEKEY_WHEEL_TIME_TO_MAX 40 // default 40
/* Action tapping settings */
#define TAPPING_TERM 200 // default 200
/* #define TAPPING_TOGGLE 2 // default 5 */
/* #define ONESHOT_TIMEOUT 5000 // default undefined */
#define ONESHOT_TAP_TOGGLE 2
#endif

223
keyboard/foobar_rgb/i2c.c Normal file
View File

@ -0,0 +1,223 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of mcu cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
static volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE] = {0};
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
static uint8_t i2c_start(uint8_t address);
static void i2c_stop(void);
static uint8_t i2c_write(uint8_t data);
static uint8_t i2c_read(uint8_t ack);
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// i2c_device_addr: the i2c device to communicate with
// addr: the memory address to read from the i2c device
// dest: pointer to where read data is saved
// len: the number of bytes to read
//
// NOTE: on error, the data in dest may have been modified
bool i2c_master_read(uint8_t i2c_device_addr, uint8_t addr, uint8_t *dest, uint8_t len) {
bool err;
if (len == 0) return 0;
err = i2c_start(i2c_device_addr + I2C_WRITE);
if (err) return err;
err = i2c_write(addr);
if (err) return err;
err = i2c_start(i2c_device_addr + I2C_READ);
if (err) return err;
for (uint8_t i = 0; i < len-1; ++i) {
dest[i] = i2c_read(I2C_ACK);
}
dest[len-1] = i2c_read(I2C_NACK);
i2c_stop();
return 0;
}
// i2c_device_addr: the i2c device to communicate with
// addr: the memory address at which to write in the i2c device
// data: the data to be written
// len: the number of bytes to write
bool i2c_master_write(uint8_t i2c_device_addr, uint8_t addr, uint8_t *data, uint8_t len) {
bool err;
if (len == 0) return 0;
err = i2c_start(i2c_device_addr + I2C_WRITE);
if (err) return err;
err = i2c_write(addr);
if (err) return err;
for (uint8_t i = 0; i < len; ++i) {
err = i2c_write(data[i]);
if (err) return err;
}
i2c_stop();
return 0;
}
void i2c_slave_write(uint8_t addr, uint8_t data) {
i2c_slave_buffer[addr] = data;
}
uint8_t i2c_slave_read(uint8_t addr) {
return i2c_slave_buffer[addr];
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_read(uint8_t ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}

21
keyboard/foobar_rgb/i2c.h Normal file
View File

@ -0,0 +1,21 @@
#ifndef I2C_H
#define I2C_H
#include <stdint.h>
#define SLAVE_BUFFER_SIZE 0x40
// i2c SCL clock frequency
#define SCL_CLOCK 100000L
void i2c_master_init(void);
void i2c_slave_init(uint8_t address);
bool i2c_master_write(uint8_t i2c_device_addr, uint8_t addr, uint8_t *dest, uint8_t len);
bool i2c_master_read(uint8_t i2c_device_addr, uint8_t addr, uint8_t *data, uint8_t len);
void i2c_slave_write(uint8_t addr, uint8_t data);
uint8_t i2c_slave_read(uint8_t addr);
#endif

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

24
keyboard/foobar_rgb/led.c Normal file
View File

@ -0,0 +1,24 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/io.h>
#include "stdint.h"
#include "led.h"
void led_set(uint8_t usb_led)
{
}

View File

@ -0,0 +1,181 @@
/*
* light weight WS2812 lib V2.0b
*
* Controls WS2811/WS2812/WS2812B RGB-LEDs
* Author: Tim (cpldcpu@gmail.com)
*
* Jan 18th, 2014 v2.0b Initial Version
* Nov 29th, 2015 v2.3 Added SK6812RGBW support
*
* License: GNU GPL v2 (see License.txt)
*/
#include "light_ws2812.h"
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/delay.h>
#include "debug.h"
// Setleds for standard RGB
void inline ws2812_setleds(struct cRGB *ledarray, uint16_t leds)
{
ws2812_setleds_pin(ledarray,leds, _BV(ws2812_pin));
}
void inline ws2812_setleds_pin(struct cRGB *ledarray, uint16_t leds, uint8_t pinmask)
{
ws2812_DDRREG |= pinmask; // Enable DDR
ws2812_sendarray_mask((uint8_t*)ledarray,leds+leds+leds,pinmask);
_delay_us(50);
}
// Setleds for SK6812RGBW
void inline ws2812_setleds_rgbw(struct cRGBW *ledarray, uint16_t leds)
{
ws2812_DDRREG |= _BV(ws2812_pin); // Enable DDR
ws2812_sendarray_mask((uint8_t*)ledarray,leds<<2,_BV(ws2812_pin));
_delay_us(80);
}
void ws2812_sendarray(uint8_t *data,uint16_t datlen)
{
ws2812_sendarray_mask(data,datlen,_BV(ws2812_pin));
}
/*
This routine writes an array of bytes with RGB values to the Dataout pin
using the fast 800kHz clockless WS2811/2812 protocol.
*/
// Timing in ns
#define w_zeropulse 350
#define w_onepulse 900
#define w_totalperiod 1250
// Fixed cycles used by the inner loop
#define w_fixedlow 2
#define w_fixedhigh 4
#define w_fixedtotal 8
// Insert NOPs to match the timing, if possible
#define w_zerocycles (((F_CPU/1000)*w_zeropulse )/1000000)
#define w_onecycles (((F_CPU/1000)*w_onepulse +500000)/1000000)
#define w_totalcycles (((F_CPU/1000)*w_totalperiod +500000)/1000000)
// w1 - nops between rising edge and falling edge - low
#define w1 (w_zerocycles-w_fixedlow)
// w2 nops between fe low and fe high
#define w2 (w_onecycles-w_fixedhigh-w1)
// w3 nops to complete loop
#define w3 (w_totalcycles-w_fixedtotal-w1-w2)
#if w1>0
#define w1_nops w1
#else
#define w1_nops 0
#endif
// The only critical timing parameter is the minimum pulse length of the "0"
// Warn or throw error if this timing can not be met with current F_CPU settings.
#define w_lowtime ((w1_nops+w_fixedlow)*1000000)/(F_CPU/1000)
#if w_lowtime>550
#error "Light_ws2812: Sorry, the clock speed is too low. Did you set F_CPU correctly?"
#elif w_lowtime>450
#warning "Light_ws2812: The timing is critical and may only work on WS2812B, not on WS2812(S)."
#warning "Please consider a higher clockspeed, if possible"
#endif
#if w2>0
#define w2_nops w2
#else
#define w2_nops 0
#endif
#if w3>0
#define w3_nops w3
#else
#define w3_nops 0
#endif
#define w_nop1 "nop \n\t"
#define w_nop2 "rjmp .+0 \n\t"
#define w_nop4 w_nop2 w_nop2
#define w_nop8 w_nop4 w_nop4
#define w_nop16 w_nop8 w_nop8
void inline ws2812_sendarray_mask(uint8_t *data,uint16_t datlen,uint8_t maskhi)
{
uint8_t curbyte,ctr,masklo;
uint8_t sreg_prev;
masklo =~maskhi&ws2812_PORTREG;
maskhi |= ws2812_PORTREG;
sreg_prev=SREG;
cli();
while (datlen--) {
curbyte=*data++;
asm volatile(
" ldi %0,8 \n\t"
"loop%=: \n\t"
" out %2,%3 \n\t" // '1' [01] '0' [01] - re
#if (w1_nops&1)
w_nop1
#endif
#if (w1_nops&2)
w_nop2
#endif
#if (w1_nops&4)
w_nop4
#endif
#if (w1_nops&8)
w_nop8
#endif
#if (w1_nops&16)
w_nop16
#endif
" sbrs %1,7 \n\t" // '1' [03] '0' [02]
" out %2,%4 \n\t" // '1' [--] '0' [03] - fe-low
" lsl %1 \n\t" // '1' [04] '0' [04]
#if (w2_nops&1)
w_nop1
#endif
#if (w2_nops&2)
w_nop2
#endif
#if (w2_nops&4)
w_nop4
#endif
#if (w2_nops&8)
w_nop8
#endif
#if (w2_nops&16)
w_nop16
#endif
" out %2,%4 \n\t" // '1' [+1] '0' [+1] - fe-high
#if (w3_nops&1)
w_nop1
#endif
#if (w3_nops&2)
w_nop2
#endif
#if (w3_nops&4)
w_nop4
#endif
#if (w3_nops&8)
w_nop8
#endif
#if (w3_nops&16)
w_nop16
#endif
" dec %0 \n\t" // '1' [+2] '0' [+2]
" brne loop%=\n\t" // '1' [+3] '0' [+4]
: "=&d" (ctr)
: "r" (curbyte), "I" (_SFR_IO_ADDR(ws2812_PORTREG)), "r" (maskhi), "r" (masklo)
);
}
SREG=sreg_prev;
}

View File

@ -0,0 +1,73 @@
/*
* light weight WS2812 lib include
*
* Version 2.3 - Nev 29th 2015
* Author: Tim (cpldcpu@gmail.com)
*
* Please do not change this file! All configuration is handled in "ws2812_config.h"
*
* License: GNU GPL v2 (see License.txt)
+
*/
#ifndef LIGHT_WS2812_H_
#define LIGHT_WS2812_H_
#include <avr/io.h>
#include <avr/interrupt.h>
//#include "ws2812_config.h"
/*
* Structure of the LED array
*
* cRGB: RGB for WS2812S/B/C/D, SK6812, SK6812Mini, SK6812WWA, APA104, APA106
* cRGBW: RGBW for SK6812RGBW
*/
struct cRGB { uint8_t g; uint8_t r; uint8_t b; };
struct cRGBW { uint8_t g; uint8_t r; uint8_t b; uint8_t w;};
/* User Interface
*
* Input:
* ledarray: An array of GRB data describing the LED colors
* number_of_leds: The number of LEDs to write
* pinmask (optional): Bitmask describing the output bin. e.g. _BV(PB0)
*
* The functions will perform the following actions:
* - Set the data-out pin as output
* - Send out the LED data
* - Wait 50<EFBFBD>s to reset the LEDs
*/
void ws2812_setleds (struct cRGB *ledarray, uint16_t number_of_leds);
void ws2812_setleds_pin (struct cRGB *ledarray, uint16_t number_of_leds,uint8_t pinmask);
void ws2812_setleds_rgbw(struct cRGBW *ledarray, uint16_t number_of_leds);
/*
* Old interface / Internal functions
*
* The functions take a byte-array and send to the data output as WS2812 bitstream.
* The length is the number of bytes to send - three per LED.
*/
void ws2812_sendarray (uint8_t *array,uint16_t length);
void ws2812_sendarray_mask(uint8_t *array,uint16_t length, uint8_t pinmask);
/*
* Internal defines
*/
#ifndef CONCAT
#define CONCAT(a, b) a ## b
#endif
#ifndef CONCAT_EXP
#define CONCAT_EXP(a, b) CONCAT(a, b)
#endif
// #define ws2812_PORTREG CONCAT_EXP(PORT,ws2812_port)
// #define ws2812_DDRREG CONCAT_EXP(DDR,ws2812_port)
#endif /* LIGHT_WS2812_H_ */

View File

@ -0,0 +1,301 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "timer.h"
#include "matrix.h"
#include "i2c.h"
#include "serial.h"
#include "split-util.h"
#include "pro-micro.h"
#include "config.h"
#include "rgblight.h"
#include "pin_defs.h"
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#define ERROR_DISCONNECT_COUNT 5
#define I2C_MATRIX_ADDR 0x00
#define I2C_LED_ADDR ROWS_PER_HAND
static uint8_t debouncing = DEBOUNCE;
static uint8_t error_count = 0;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// To use PORTF disable JTAG with writing JTD bit twice within four cycles.
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// initialize row and col
unselect_rows();
init_cols();
TX_RX_LED_INIT;
//Turn LEDs off by default
RXLED0;
TXLED0;
rgblight_init();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
}
uint8_t _matrix_scan(void)
{
// Right hand is stored after the left in the matirx so, we need to offset it
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i+offset] != cols) {
matrix_debouncing[i+offset] = cols;
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
}
}
return 1;
}
// Get rows from other half over i2c
int i2c_transaction(void) {
bool err = false;
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
err = i2c_master_read(
SLAVE_I2C_ADDRESS, // i2c address of other half
I2C_MATRIX_ADDR, // read the slaves matrix data
matrix+slaveOffset, // store in correct position in master's matrix
ROWS_PER_HAND // number of bytes to read
);
#ifdef I2C_WRITE_TEST_CODE
// controls the RX led on the slave and toggles it every second
uint8_t test_data = (timer_read() / 1000) % 2;
err |= i2c_master_write(
SLAVE_I2C_ADDRESS, // i2c address of other half
I2C_LED_ADDR, // address for led control
&test_data, // data to send
sizeof(test_data) // size of test data
);
#endif
return err;
}
int serial_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
if (serial_update_buffers()) {
return 1;
}
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = serial_slave_buffer[i];
}
return 0;
}
uint8_t matrix_scan(void)
{
int ret = _matrix_scan();
#ifdef USE_I2C
if( i2c_transaction() ) {
#else
if( serial_transaction() ) {
#endif
// turn on the indicator led when halves are disconnected
TXLED1;
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
// turn off the indicator led on no error
TXLED0;
error_count = 0;
}
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
int offset = (isLeftHand) ? 0 : (MATRIX_ROWS / 2);
#ifdef USE_I2C
for (int i = 0; i < ROWS_PER_HAND; ++i) {
i2c_slave_write(I2C_MATRIX_ADDR+i, matrix[offset+i]);
}
#ifdef I2C_WRITE_TEST_CODE
// control the pro micro RX LED based on what the
// i2c master has sent us
uint8_t led_state = i2c_slave_read(I2C_LED_ADDR);
if (led_state == 1) {
RXLED1;
} else if(led_state == 0) {
RXLED0;
}
#endif
#else
for (int i = 0; i < ROWS_PER_HAND; ++i) {
serial_slave_buffer[i] = matrix[offset+i];
}
#endif
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
for(int x = 0; x < MATRIX_COLS; x++) {
_SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF);
_SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
}
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
}
return result;
}
static void unselect_rows(void)
{
for(int x = 0; x < ROWS_PER_HAND; x++) {
_SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF);
_SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
}
}
static void select_row(uint8_t row)
{
_SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF);
_SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}

View File

@ -0,0 +1,58 @@
#ifndef PIN_DEFS_H
#define PIN_DEFS_H
/* diode directions */
#define COL2ROW 0
#define ROW2COL 1
/* I/O pins */
#define B0 0x30
#define B1 0x31
#define B2 0x32
#define B3 0x33
#define B4 0x34
#define B5 0x35
#define B6 0x36
#define B7 0x37
#define C0 0x60
#define C1 0x61
#define C2 0x62
#define C3 0x63
#define C4 0x64
#define C5 0x65
#define C6 0x66
#define C7 0x67
#define D0 0x90
#define D1 0x91
#define D2 0x92
#define D3 0x93
#define D4 0x94
#define D5 0x95
#define D6 0x96
#define D7 0x97
#define E0 0xC0
#define E1 0xC1
#define E2 0xC2
#define E3 0xC3
#define E4 0xC4
#define E5 0xC5
#define E6 0xC6
#define E7 0xC7
#define F0 0xF0
#define F1 0xF1
#define F2 0xF2
#define F3 0xF3
#define F4 0xF4
#define F5 0xF5
#define F6 0xF6
#define F7 0xF7
#define A0 0x00
#define A1 0x01
#define A2 0x02
#define A3 0x03
#define A4 0x04
#define A5 0x05
#define A6 0x06
#define A7 0x07
#endif

View File

@ -0,0 +1,362 @@
/*
pins_arduino.h - Pin definition functions for Arduino
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2007 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.h 249 2007-02-03 16:52:51Z mellis $
*/
#ifndef Pins_Arduino_h
#define Pins_Arduino_h
#include <avr/pgmspace.h>
// Workaround for wrong definitions in "iom32u4.h".
// This should be fixed in the AVR toolchain.
#undef UHCON
#undef UHINT
#undef UHIEN
#undef UHADDR
#undef UHFNUM
#undef UHFNUML
#undef UHFNUMH
#undef UHFLEN
#undef UPINRQX
#undef UPINTX
#undef UPNUM
#undef UPRST
#undef UPCONX
#undef UPCFG0X
#undef UPCFG1X
#undef UPSTAX
#undef UPCFG2X
#undef UPIENX
#undef UPDATX
#undef TCCR2A
#undef WGM20
#undef WGM21
#undef COM2B0
#undef COM2B1
#undef COM2A0
#undef COM2A1
#undef TCCR2B
#undef CS20
#undef CS21
#undef CS22
#undef WGM22
#undef FOC2B
#undef FOC2A
#undef TCNT2
#undef TCNT2_0
#undef TCNT2_1
#undef TCNT2_2
#undef TCNT2_3
#undef TCNT2_4
#undef TCNT2_5
#undef TCNT2_6
#undef TCNT2_7
#undef OCR2A
#undef OCR2_0
#undef OCR2_1
#undef OCR2_2
#undef OCR2_3
#undef OCR2_4
#undef OCR2_5
#undef OCR2_6
#undef OCR2_7
#undef OCR2B
#undef OCR2_0
#undef OCR2_1
#undef OCR2_2
#undef OCR2_3
#undef OCR2_4
#undef OCR2_5
#undef OCR2_6