1
0

Upload files to 'keyboard/aardvark'

Этот коммит содержится в:
di0ib 2020-08-05 21:53:40 +00:00
родитель 1a16bb2555
Коммит 51a1e56e29
3 изменённых файлов: 970 добавлений и 0 удалений

505
keyboard/aardvark/rgblight.c Обычный файл
Просмотреть файл

@ -0,0 +1,505 @@
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "progmem.h"
#include "timer.h"
#include "rgblight.h"
#include "debug.h"
const uint8_t DIM_CURVE[] PROGMEM = {
0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6,
6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11,
11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15,
15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20,
20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26,
27, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35,
36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 43, 43, 44, 45, 46, 47,
48, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82,
83, 85, 86, 88, 90, 91, 93, 94, 96, 98, 99, 101, 103, 105, 107, 109,
110, 112, 114, 116, 118, 121, 123, 125, 127, 129, 132, 134, 136, 139, 141, 144,
146, 149, 151, 154, 157, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 190,
193, 196, 200, 203, 207, 211, 214, 218, 222, 226, 230, 234, 238, 242, 248, 255,
};
const uint8_t RGBLED_BREATHING_TABLE[] PROGMEM = {0,0,0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,17,18,20,21,23,25,27,29,31,33,35,37,40,42,44,47,49,52,54,57,59,62,65,67,70,73,76,79,82,85,88,90,93,97,100,103,106,109,112,115,118,121,124,127,131,134,137,140,143,146,149,152,155,158,162,165,167,170,173,176,179,182,185,188,190,193,196,198,201,203,206,208,211,213,215,218,220,222,224,226,228,230,232,234,235,237,238,240,241,243,244,245,246,248,249,250,250,251,252,253,253,254,254,254,255,255,255,255,255,255,255,254,254,254,253,253,252,251,250,250,249,248,246,245,244,243,241,240,238,237,235,234,232,230,228,226,224,222,220,218,215,213,211,208,206,203,201,198,196,193,190,188,185,182,179,176,173,170,167,165,162,158,155,152,149,146,143,140,137,134,131,128,124,121,118,115,112,109,106,103,100,97,93,90,88,85,82,79,76,73,70,67,65,62,59,57,54,52,49,47,44,42,40,37,35,33,31,29,27,25,23,21,20,18,17,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0};
const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5};
const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30};
const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20};
const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20};
const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {100, 50, 20};
rgblight_config_t rgblight_config;
rgblight_config_t inmem_config;
struct cRGB led[RGBLED_NUM];
uint8_t rgblight_inited = 0;
void sethsv(uint16_t hue, uint8_t sat, uint8_t val, struct cRGB *led1) {
/* convert hue, saturation and brightness ( HSB/HSV ) to RGB
The DIM_CURVE is used only on brightness/value and on saturation (inverted).
This looks the most natural.
*/
uint8_t r, g, b;
val = pgm_read_byte(&DIM_CURVE[val]);
sat = 255 - pgm_read_byte(&DIM_CURVE[255 - sat]);
uint8_t base;
if (sat == 0) { // Acromatic color (gray). Hue doesn't mind.
r = val;
g = val;
b = val;
} else {
base = ((255 - sat) * val) >> 8;
switch (hue / 60) {
case 0:
r = val;
g = (((val - base)*hue) / 60) + base;
b = base;
break;
case 1:
r = (((val - base)*(60 - (hue % 60))) / 60) + base;
g = val;
b = base;
break;
case 2:
r = base;
g = val;
b = (((val - base)*(hue % 60)) / 60) + base;
break;
case 3:
r = base;
g = (((val - base)*(60 - (hue % 60))) / 60) + base;
b = val;
break;
case 4:
r = (((val - base)*(hue % 60)) / 60) + base;
g = base;
b = val;
break;
case 5:
r = val;
g = base;
b = (((val - base)*(60 - (hue % 60))) / 60) + base;
break;
}
}
setrgb(r,g,b, led1);
}
void setrgb(uint8_t r, uint8_t g, uint8_t b, struct cRGB *led1) {
(*led1).r = r;
(*led1).g = g;
(*led1).b = b;
}
uint32_t eeconfig_read_rgblight(void) {
return eeprom_read_dword(EECONFIG_RGBLIGHT);
}
void eeconfig_write_rgblight(uint32_t val) {
eeprom_write_dword(EECONFIG_RGBLIGHT, val);
}
void eeconfig_write_rgblight_default(void) {
dprintf("eeconfig_write_rgblight_default\n");
rgblight_config.enable = 1;
rgblight_config.mode = 1;
rgblight_config.hue = 200;
rgblight_config.sat = 204;
rgblight_config.val = 204;
eeconfig_write_rgblight(rgblight_config.raw);
}
void eeconfig_debug_rgblight(void) {
dprintf("rgblight_config eprom\n");
dprintf("rgblight_config.enable = %d\n", rgblight_config.enable);
dprintf("rghlight_config.mode = %d\n", rgblight_config.mode);
dprintf("rgblight_config.hue = %d\n", rgblight_config.hue);
dprintf("rgblight_config.sat = %d\n", rgblight_config.sat);
dprintf("rgblight_config.val = %d\n", rgblight_config.val);
}
void rgblight_init(void) {
debug_enable = 1; // Debug ON!
dprintf("rgblight_init called.\n");
rgblight_inited = 1;
dprintf("rgblight_init start!\n");
if (!eeconfig_is_enabled()) {
dprintf("rgblight_init eeconfig is not enabled.\n");
eeconfig_init();
eeconfig_write_rgblight_default();
}
rgblight_config.raw = eeconfig_read_rgblight();
if (!rgblight_config.mode) {
dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n");
eeconfig_write_rgblight_default();
rgblight_config.raw = eeconfig_read_rgblight();
}
eeconfig_debug_rgblight(); // display current eeprom values
rgblight_timer_init(); // setup the timer
if (rgblight_config.enable) {
rgblight_mode(rgblight_config.mode);
}
}
void rgblight_increase(void) {
uint8_t mode;
if (rgblight_config.mode < RGBLIGHT_MODES) {
mode = rgblight_config.mode + 1;
}
rgblight_mode(mode);
}
void rgblight_decrease(void) {
uint8_t mode;
if (rgblight_config.mode > 1) { //mode will never < 1, if mode is less than 1, eeprom need to be initialized.
mode = rgblight_config.mode-1;
}
rgblight_mode(mode);
}
void rgblight_step(void) {
uint8_t mode;
mode = rgblight_config.mode + 1;
if (mode > RGBLIGHT_MODES) {
mode = 1;
}
rgblight_mode(mode);
}
void rgblight_mode(uint8_t mode) {
if (!rgblight_config.enable) {
return;
}
if (mode<1) {
rgblight_config.mode = 1;
} else if (mode > RGBLIGHT_MODES) {
rgblight_config.mode = RGBLIGHT_MODES;
} else {
rgblight_config.mode = mode;
}
eeconfig_write_rgblight(rgblight_config.raw);
dprintf("rgblight mode: %u\n", rgblight_config.mode);
if (rgblight_config.mode == 1) {
rgblight_timer_disable();
} else if (rgblight_config.mode >=2 && rgblight_config.mode <=23) {
// MODE 2-5, breathing
// MODE 6-8, rainbow mood
// MODE 9-14, rainbow swirl
// MODE 15-20, snake
// MODE 21-23, knight
rgblight_timer_enable();
}
rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_toggle(void) {
rgblight_config.enable ^= 1;
eeconfig_write_rgblight(rgblight_config.raw);
dprintf("rgblight toggle: rgblight_config.enable = %u\n", rgblight_config.enable);
if (rgblight_config.enable) {
rgblight_mode(rgblight_config.mode);
} else {
rgblight_timer_disable();
_delay_ms(50);
rgblight_set();
}
}
void rgblight_increase_hue(void){
uint16_t hue;
hue = (rgblight_config.hue+RGBLIGHT_HUE_STEP) % 360;
rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_decrease_hue(void){
uint16_t hue;
if (rgblight_config.hue-RGBLIGHT_HUE_STEP <0 ) {
hue = (rgblight_config.hue+360-RGBLIGHT_HUE_STEP) % 360;
} else {
hue = (rgblight_config.hue-RGBLIGHT_HUE_STEP) % 360;
}
rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val);
}
void rgblight_increase_sat(void) {
uint8_t sat;
if (rgblight_config.sat + RGBLIGHT_SAT_STEP > 255) {
sat = 255;
} else {
sat = rgblight_config.sat+RGBLIGHT_SAT_STEP;
}
rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val);
}
void rgblight_decrease_sat(void){
uint8_t sat;
if (rgblight_config.sat - RGBLIGHT_SAT_STEP < 0) {
sat = 0;
} else {
sat = rgblight_config.sat-RGBLIGHT_SAT_STEP;
}
rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val);
}
void rgblight_increase_val(void){
uint8_t val;
if (rgblight_config.val + RGBLIGHT_VAL_STEP > 255) {
val = 255;
} else {
val = rgblight_config.val+RGBLIGHT_VAL_STEP;
}
rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val);
}
void rgblight_decrease_val(void) {
uint8_t val;
if (rgblight_config.val - RGBLIGHT_VAL_STEP < 0) {
val = 0;
} else {
val = rgblight_config.val-RGBLIGHT_VAL_STEP;
}
rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val);
}
void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val){
inmem_config.raw = rgblight_config.raw;
if (rgblight_config.enable) {
struct cRGB tmp_led;
sethsv(hue, sat, val, &tmp_led);
inmem_config.hue = hue;
inmem_config.sat = sat;
inmem_config.val = val;
// dprintf("rgblight set hue [MEMORY]: %u,%u,%u\n", inmem_config.hue, inmem_config.sat, inmem_config.val);
rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b);
}
}
void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val){
if (rgblight_config.enable) {
if (rgblight_config.mode == 1) {
// same static color
rgblight_sethsv_noeeprom(hue, sat, val);
} else {
// all LEDs in same color
if (rgblight_config.mode >= 2 && rgblight_config.mode <= 5) {
// breathing mode, ignore the change of val, use in memory value instead
val = rgblight_config.val;
} else if (rgblight_config.mode >= 6 && rgblight_config.mode <= 14) {
// rainbow mood and rainbow swirl, ignore the change of hue
hue = rgblight_config.hue;
}
}
rgblight_config.hue = hue;
rgblight_config.sat = sat;
rgblight_config.val = val;
eeconfig_write_rgblight(rgblight_config.raw);
dprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val);
}
}
void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b){
// dprintf("rgblight set rgb: %u,%u,%u\n", r,g,b);
for (uint8_t i=0;i<RGBLED_NUM;i++) {
led[i].r = r;
led[i].g = g;
led[i].b = b;
}
rgblight_set();
}
void rgblight_set(void) {
if (rgblight_config.enable) {
ws2812_setleds(led, RGBLED_NUM);
} else {
for (uint8_t i=0;i<RGBLED_NUM;i++) {
led[i].r = 0;
led[i].g = 0;
led[i].b = 0;
}
ws2812_setleds(led, RGBLED_NUM);
}
}
// Animation timer -- AVR Timer1
void rgblight_timer_init(void) {
static uint8_t rgblight_timer_is_init = 0;
if (rgblight_timer_is_init) {
return;
}
rgblight_timer_is_init = 1;
/* Timer 1 setup */
TCCR1B = _BV(WGM12) //CTC mode OCR1A as TOP
| _BV(CS12); //Clock selelct: clk/1
/* Set TOP value */
uint8_t sreg = SREG;
cli();
OCR1AH = (RGBLED_TIMER_TOP>>8)&0xff;
OCR1AL = RGBLED_TIMER_TOP&0xff;
SREG = sreg;
}
void rgblight_timer_enable(void) {
TIMSK1 |= _BV(OCIE1A);
dprintf("TIMER1 enabled.\n");
}
void rgblight_timer_disable(void) {
TIMSK1 &= ~_BV(OCIE1A);
dprintf("TIMER1 disabled.\n");
}
void rgblight_timer_toggle(void) {
TIMSK1 ^= _BV(OCIE1A);
dprintf("TIMER1 toggled.\n");
}
ISR(TIMER1_COMPA_vect) {
// Mode = 1, static light, do nothing here
if (rgblight_config.mode>=2 && rgblight_config.mode<=5) {
// mode = 2 to 5, breathing mode
rgblight_effect_breathing(rgblight_config.mode-2);
} else if (rgblight_config.mode>=6 && rgblight_config.mode<=8) {
rgblight_effect_rainbow_mood(rgblight_config.mode-6);
} else if (rgblight_config.mode>=9 && rgblight_config.mode<=14) {
rgblight_effect_rainbow_swirl(rgblight_config.mode-9);
} else if (rgblight_config.mode>=15 && rgblight_config.mode<=20) {
rgblight_effect_snake(rgblight_config.mode-15);
} else if (rgblight_config.mode>=21 && rgblight_config.mode<=23) {
rgblight_effect_knight(rgblight_config.mode-21);
}
}
// effects
void rgblight_effect_breathing(uint8_t interval) {
static uint8_t pos = 0;
static uint16_t last_timer = 0;
if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_BREATHING_INTERVALS[interval])) return;
last_timer = timer_read();
rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, pgm_read_byte(&RGBLED_BREATHING_TABLE[pos]));
pos = (pos+1) % 256;
}
void rgblight_effect_rainbow_mood(uint8_t interval) {
static uint16_t current_hue=0;
static uint16_t last_timer = 0;
if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval])) return;
last_timer = timer_read();
rgblight_sethsv_noeeprom(current_hue, rgblight_config.sat, rgblight_config.val);
current_hue = (current_hue+1) % 360;
}
void rgblight_effect_rainbow_swirl(uint8_t interval) {
static uint16_t current_hue=0;
static uint16_t last_timer = 0;
uint16_t hue;
uint8_t i;
if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval/2])) return;
last_timer = timer_read();
for (i=0; i<RGBLED_NUM; i++) {
hue = (360/RGBLED_NUM*i+current_hue)%360;
sethsv(hue, rgblight_config.sat, rgblight_config.val, &led[i]);
}
rgblight_set();
if (interval % 2) {
current_hue = (current_hue+1) % 360;
} else {
if (current_hue -1 < 0) {
current_hue = 359;
} else {
current_hue = current_hue - 1;
}
}
}
void rgblight_effect_snake(uint8_t interval) {
static uint8_t pos=0;
static uint16_t last_timer = 0;
uint8_t i,j;
int8_t k;
int8_t increament = 1;
if (interval%2) increament = -1;
if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_SNAKE_INTERVALS[interval/2])) return;
last_timer = timer_read();
for (i=0;i<RGBLED_NUM;i++) {
led[i].r=0;
led[i].g=0;
led[i].b=0;
for (j=0;j<RGBLIGHT_EFFECT_SNAKE_LENGTH;j++) {
k = pos+j*increament;
if (k<0) k = k+RGBLED_NUM;
if (i==k) {
sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val*(RGBLIGHT_EFFECT_SNAKE_LENGTH-j)/RGBLIGHT_EFFECT_SNAKE_LENGTH), &led[i]);
}
}
}
rgblight_set();
if (increament == 1) {
if (pos - 1 < 0) {
pos = 13;
} else {
pos -= 1;
}
} else {
pos = (pos+1)%RGBLED_NUM;
}
}
void rgblight_effect_knight(uint8_t interval) {
static int8_t pos=0;
static uint16_t last_timer = 0;
uint8_t i,j,cur;
int8_t k;
struct cRGB preled[RGBLED_NUM];
static int8_t increament = -1;
if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_KNIGHT_INTERVALS[interval])) return;
last_timer = timer_read();
for (i=0;i<RGBLED_NUM;i++) {
preled[i].r=0;
preled[i].g=0;
preled[i].b=0;
for (j=0;j<RGBLIGHT_EFFECT_KNIGHT_LENGTH;j++) {
k = pos+j*increament;
if (k<0) k = 0;
if (k>=RGBLED_NUM) k=RGBLED_NUM-1;
if (i==k) {
sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, &preled[i]);
}
}
}
if (RGBLIGHT_EFFECT_KNIGHT_OFFSET) {
for (i=0;i<RGBLED_NUM;i++) {
cur = (i+RGBLIGHT_EFFECT_KNIGHT_OFFSET) % RGBLED_NUM;
led[i].r = preled[cur].r;
led[i].g = preled[cur].g;
led[i].b = preled[cur].b;
}
}
rgblight_set();
if (increament == 1) {
if (pos - 1 < 0 - RGBLIGHT_EFFECT_KNIGHT_LENGTH) {
pos = 0- RGBLIGHT_EFFECT_KNIGHT_LENGTH;
increament = -1;
} else {
pos -= 1;
}
} else {
if (pos+1>RGBLED_NUM+RGBLIGHT_EFFECT_KNIGHT_LENGTH) {
pos = RGBLED_NUM+RGBLIGHT_EFFECT_KNIGHT_LENGTH-1;
increament = 1;
} else {
pos += 1;
}
}
}

87
keyboard/aardvark/rgblight.h Обычный файл
Просмотреть файл

@ -0,0 +1,87 @@
#ifndef RGBLIGHT_H
#define RGBLIGHT_H
#ifndef RGBLIGHT_MODES
#define RGBLIGHT_MODES 23
#endif
#ifndef RGBLIGHT_EFFECT_SNAKE_LENGTH
#define RGBLIGHT_EFFECT_SNAKE_LENGTH 7
#endif
#ifndef RGBLIGHT_EFFECT_KNIGHT_LENGTH
#define RGBLIGHT_EFFECT_KNIGHT_LENGTH 7
#endif
#ifndef RGBLIGHT_EFFECT_KNIGHT_OFFSET
#define RGBLIGHT_EFFECT_KNIGHT_OFFSET 11
#endif
#ifndef RGBLIGHT_EFFECT_DUALKNIGHT_LENGTH
#define RGBLIGHT_EFFECT_DUALKNIGHT_LENGTH 4
#endif
#ifndef RGBLIGHT_HUE_STEP
#define RGBLIGHT_HUE_STEP 10
#endif
#ifndef RGBLIGHT_SAT_STEP
#define RGBLIGHT_SAT_STEP 17
#endif
#ifndef RGBLIGHT_VAL_STEP
#define RGBLIGHT_VAL_STEP 17
#endif
#define RGBLED_TIMER_TOP F_CPU/(256*64)
#include <stdint.h>
#include <stdbool.h>
#include "eeconfig.h"
#include "light_ws2812.h"
typedef union {
uint32_t raw;
struct {
bool enable :1;
uint8_t mode :6;
uint16_t hue :9;
uint8_t sat :8;
uint8_t val :8;
};
} rgblight_config_t;
void rgblight_init(void);
void rgblight_increase(void);
void rgblight_decrease(void);
void rgblight_toggle(void);
void rgblight_step(void);
void rgblight_mode(uint8_t mode);
void rgblight_set(void);
void rgblight_increase_hue(void);
void rgblight_decrease_hue(void);
void rgblight_increase_sat(void);
void rgblight_decrease_sat(void);
void rgblight_increase_val(void);
void rgblight_decrease_val(void);
void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val);
void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b);
#define EECONFIG_RGBLIGHT (uint8_t *)7
uint32_t eeconfig_read_rgblight(void);
void eeconfig_write_rgblight(uint32_t val);
void eeconfig_write_rgblight_default(void);
void eeconfig_debug_rgblight(void);
void sethsv(uint16_t hue, uint8_t sat, uint8_t val, struct cRGB *led1);
void setrgb(uint8_t r, uint8_t g, uint8_t b, struct cRGB *led1);
void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val);
void rgblight_timer_init(void);
void rgblight_timer_enable(void);
void rgblight_timer_disable(void);
void rgblight_timer_toggle(void);
void rgblight_effect_breathing(uint8_t interval);
void rgblight_effect_rainbow_mood(uint8_t interval);
void rgblight_effect_rainbow_swirl(uint8_t interval);
void rgblight_effect_snake(uint8_t interval);
void rgblight_effect_knight(uint8_t interval);
#endif

378
keyboard/aardvark/usbconfig.h Обычный файл
Просмотреть файл

@ -0,0 +1,378 @@
/* Name: usbconfig.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2005-04-01
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbconfig-prototype.h 785 2010-05-30 17:57:07Z cs $
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
*/
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 4
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
* 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
* require no crystal, they tolerate +/- 1% deviation from the nominal
* frequency. All other rates require a precision of 2000 ppm and thus a
* crystal!
* Since F_CPU should be defined to your actual clock rate anyway, you should
* not need to modify this setting.
*/
#define USB_CFG_CHECK_CRC 0
/* Define this to 1 if you want that the driver checks integrity of incoming
* data packets (CRC checks). CRC checks cost quite a bit of code size and are
* currently only available for 18 MHz crystal clock. You must choose
* USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
*/
/* ----------------------- Optional Hardware Config ------------------------ */
/* #define USB_CFG_PULLUP_IOPORTNAME D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
/* #define USB_CFG_PULLUP_BIT 4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 1
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 1
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_SUPPRESS_INTR_CODE 0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
* want to send any data over them. If this macro is defined to 1, functions
* usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
* you need the interrupt-in endpoints in order to comply to an interface
* (e.g. HID), but never want to send any data. This option saves a couple
* of bytes in flash memory and the transmit buffers in RAM.
*/
#define USB_CFG_INTR_POLL_INTERVAL 10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 500
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 1
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_DRIVER_FLASH_PAGE 0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
* where the driver's constants (descriptors) are located. Or in other words:
* Define this to 1 for boot loaders on the ATMega128.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
/* #ifdef __ASSEMBLER__
* macro myAssemblerMacro
* in YL, TCNT0
* sts timer0Snapshot, YL
* endm
* #endif
* #define USB_SOF_HOOK myAssemblerMacro
* This macro (if defined) is executed in the assembler module when a
* Start Of Frame condition is detected. It is recommended to define it to
* the name of an assembler macro which is defined here as well so that more
* than one assembler instruction can be used. The macro may use the register
* YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
* immediately after an SOF pulse may be lost and must be retried by the host.
* What can you do with this hook? Since the SOF signal occurs exactly every
* 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
* designs running on the internal RC oscillator.
* Please note that Start Of Frame detection works only if D- is wired to the
* interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
*/
#define USB_CFG_CHECK_DATA_TOGGLING 0
/* define this macro to 1 if you want to filter out duplicate data packets
* sent by the host. Duplicates occur only as a consequence of communication
* errors, when the host does not receive an ACK. Please note that you need to
* implement the filtering yourself in usbFunctionWriteOut() and
* usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
* for each control- and out-endpoint to check for duplicate packets.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
#define USB_USE_FAST_CRC 0
/* The assembler module has two implementations for the CRC algorithm. One is
* faster, the other is smaller. This CRC routine is only used for transmitted
* messages where timing is not critical. The faster routine needs 31 cycles
* per byte while the smaller one needs 61 to 69 cycles. The faster routine
* may be worth the 32 bytes bigger code size if you transmit lots of data and
* run the AVR close to its limit.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID (VENDOR_ID & 0xFF), ((VENDOR_ID >> 8) & 0xFF)
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you may use one of obdev's free
* shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_ID (PRODUCT_ID & 0xFF), ((PRODUCT_ID >> 8) & 0xFF)
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you may use one of obdev's free shared VID/PID pairs. See the file
* USB-IDs-for-free.txt for details!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 't', '.', 'm', '.', 'k', '.'
#define USB_CFG_VENDOR_NAME_LEN 6
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'a', 'a', 'r', 'd', 'v', 'a', 'r', 'k', ' ', 'V', '-', 'U', 'S', 'B', ' ', 'k', 'e', 'y', 'b', 'o', 'a', 'r', 'd'
#define USB_CFG_DEVICE_NAME_LEN 23
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USB-IDs-for-free.txt before you assign a name if
* you use a shared VID/PID.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 3 /* HID */
#define USB_CFG_INTERFACE_SUBCLASS 1 /* Boot */
#define USB_CFG_INTERFACE_PROTOCOL 1 /* Keyboard */
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 0
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
* used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
* you want RAM pointers.
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
* Note about string descriptors: String descriptors are not just strings, they
* are Unicode strings prefixed with a 2 byte header. Example:
* int serialNumberDescriptor[] = {
* USB_STRING_DESCRIPTOR_HEADER(6),
* 'S', 'e', 'r', 'i', 'a', 'l'
* };
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
//#define USB_CFG_DESCR_PROPS_HID USB_PROP_IS_DYNAMIC
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT USB_PROP_IS_DYNAMIC
//#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
/* #define USB_INTR_VECTOR INT0_vect */
#endif /* __usbconfig_h_included__ */