#include #include #include #include #include #include #include "i2c.h" #define I2C_READ 1 #define I2C_WRITE 0 #define I2C_ACK 1 #define I2C_NACK 0 // Limits the amount of we wait for any one i2c transaction. // Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is // 9 bits, a single transaction will take around 90μs to complete. // // (F_CPU/SCL_CLOCK) => # of mcu cycles to transfer a bit // poll loop takes at least 8 clock cycles to execute #define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8 #define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE) static volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE] = {0}; static volatile uint8_t slave_buffer_pos; static volatile bool slave_has_register_set = false; static uint8_t i2c_start(uint8_t address); static void i2c_stop(void); static uint8_t i2c_write(uint8_t data); static uint8_t i2c_read(uint8_t ack); // Wait for an i2c operation to finish inline static void i2c_delay(void) { uint16_t lim = 0; while(!(TWCR & (1<10. // Check datasheets for more info. TWBR = ((F_CPU/SCL_CLOCK)-16)/2; } // Start a transaction with the given i2c slave address. The direction of the // transfer is set with I2C_READ and I2C_WRITE. // returns: 0 => success // 1 => error uint8_t i2c_start(uint8_t address) { TWCR = (1< slave ACK // 1 => slave NACK uint8_t i2c_write(uint8_t data) { TWDR = data; TWCR = (1<= SLAVE_BUFFER_SIZE ) { ack = 0; slave_buffer_pos = 0; } slave_has_register_set = true; } else { i2c_slave_buffer[slave_buffer_pos] = TWDR; BUFFER_POS_INC(); } break; case TW_ST_SLA_ACK: case TW_ST_DATA_ACK: // master has addressed this device as a slave transmitter and is // requesting data. TWDR = i2c_slave_buffer[slave_buffer_pos]; BUFFER_POS_INC(); break; case TW_BUS_ERROR: // something went wrong, reset twi state TWCR = 0; default: break; } // Reset everything, so we are ready for the next TWI interrupt TWCR |= (1<