1
0
tmk_keyboard/keyboard/25/i2c.c
2017-09-17 13:55:22 -10:00

224 rivejä
5.9 KiB
C

#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of mcu cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
static volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE] = {0};
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
static uint8_t i2c_start(uint8_t address);
static void i2c_stop(void);
static uint8_t i2c_write(uint8_t data);
static uint8_t i2c_read(uint8_t ack);
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// i2c_device_addr: the i2c device to communicate with
// addr: the memory address to read from the i2c device
// dest: pointer to where read data is saved
// len: the number of bytes to read
//
// NOTE: on error, the data in dest may have been modified
bool i2c_master_read(uint8_t i2c_device_addr, uint8_t addr, uint8_t *dest, uint8_t len) {
bool err;
if (len == 0) return 0;
err = i2c_start(i2c_device_addr + I2C_WRITE);
if (err) return err;
err = i2c_write(addr);
if (err) return err;
err = i2c_start(i2c_device_addr + I2C_READ);
if (err) return err;
for (uint8_t i = 0; i < len-1; ++i) {
dest[i] = i2c_read(I2C_ACK);
}
dest[len-1] = i2c_read(I2C_NACK);
i2c_stop();
return 0;
}
// i2c_device_addr: the i2c device to communicate with
// addr: the memory address at which to write in the i2c device
// data: the data to be written
// len: the number of bytes to write
bool i2c_master_write(uint8_t i2c_device_addr, uint8_t addr, uint8_t *data, uint8_t len) {
bool err;
if (len == 0) return 0;
err = i2c_start(i2c_device_addr + I2C_WRITE);
if (err) return err;
err = i2c_write(addr);
if (err) return err;
for (uint8_t i = 0; i < len; ++i) {
err = i2c_write(data[i]);
if (err) return err;
}
i2c_stop();
return 0;
}
void i2c_slave_write(uint8_t addr, uint8_t data) {
i2c_slave_buffer[addr] = data;
}
uint8_t i2c_slave_read(uint8_t addr) {
return i2c_slave_buffer[addr];
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_read(uint8_t ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}