tmk_keyboard/tmk_core/tool/mbed/mbed-sdk/libraries/USBDevice/USBDevice/USBHAL_Maxim.cpp

474 regels
12 KiB
C++

/*******************************************************************************
* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#if defined(TARGET_Maxim)
#include "USBHAL.h"
#include "usb_regs.h"
#include "clkman_regs.h"
#define CONNECT_INTS (MXC_F_USB_DEV_INTEN_BRST | MXC_F_USB_DEV_INTEN_SETUP | MXC_F_USB_DEV_INTEN_EP_IN | MXC_F_USB_DEV_INTEN_EP_OUT | MXC_F_USB_DEV_INTEN_DMA_ERR)
USBHAL *USBHAL::instance;
typedef struct {
volatile uint32_t buf0_desc;
volatile uint32_t buf0_address;
volatile uint32_t buf1_desc;
volatile uint32_t buf1_address;
} ep_buffer_t;
typedef struct {
ep_buffer_t out_buffer;
ep_buffer_t in_buffer;
} ep0_buffer_t;
typedef struct {
ep0_buffer_t ep0;
ep_buffer_t ep[MXC_USB_NUM_EP - 1];
} ep_buffer_descriptor_t;
// Static storage for endpoint buffer descriptor table. Must be 512 byte alligned for DMA.
#ifdef __IAR_SYSTEMS_ICC__
#pragma data_alignment = 512
#else
__attribute__ ((aligned (512)))
#endif
ep_buffer_descriptor_t ep_buffer_descriptor;
// static storage for temporary data buffers. Must be 32 byte alligned.
#ifdef __IAR_SYSTEMS_ICC__
#pragma data_alignment = 4
#else
__attribute__ ((aligned (4)))
#endif
static uint8_t aligned_buffer[NUMBER_OF_LOGICAL_ENDPOINTS][MXC_USB_MAX_PACKET];
// contorl packet state
static enum {
CTRL_NONE = 0,
CTRL_SETUP,
CTRL_OUT,
CTRL_IN,
} control_state;
USBHAL::USBHAL(void)
{
NVIC_DisableIRQ(USB_IRQn);
// The PLL must be enabled for USB
MBED_ASSERT(MXC_CLKMAN->clk_config & MXC_F_CLKMAN_CLK_CONFIG_PLL_ENABLE);
// Enable the USB clock
MXC_CLKMAN->clk_ctrl |= MXC_F_CLKMAN_CLK_CTRL_USB_GATE_N;
// reset the device
MXC_USB->cn = 0;
MXC_USB->cn = 1;
MXC_USB->dev_inten = 0;
MXC_USB->dev_cn = 0;
MXC_USB->dev_cn = MXC_F_USB_DEV_CN_URST;
MXC_USB->dev_cn = 0;
// fill in callback arrays
epCallback[EP0OUT] = NULL;
epCallback[EP0IN] = NULL;
epCallback[EP1OUT] = &USBHAL::EP1_OUT_callback;
epCallback[EP1IN ] = &USBHAL::EP1_IN_callback;
epCallback[EP2OUT] = &USBHAL::EP2_OUT_callback;
epCallback[EP2IN ] = &USBHAL::EP2_IN_callback;
epCallback[EP3OUT] = &USBHAL::EP3_OUT_callback;
epCallback[EP3IN ] = &USBHAL::EP3_IN_callback;
epCallback[EP4OUT] = &USBHAL::EP4_OUT_callback;
epCallback[EP4IN ] = &USBHAL::EP4_IN_callback;
epCallback[EP5OUT] = &USBHAL::EP5_OUT_callback;
epCallback[EP5IN ] = &USBHAL::EP5_IN_callback;
epCallback[EP6OUT] = &USBHAL::EP6_OUT_callback;
epCallback[EP6IN ] = &USBHAL::EP6_IN_callback;
epCallback[EP7OUT] = &USBHAL::EP7_OUT_callback;
epCallback[EP7IN ] = &USBHAL::EP7_IN_callback;
// clear driver state
control_state = CTRL_NONE;
// set the descriptor location
MXC_USB->ep_base = (uint32_t)&ep_buffer_descriptor;
// attach IRQ handler and enable interrupts
instance = this;
NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
NVIC_EnableIRQ(USB_IRQn);
}
USBHAL::~USBHAL(void)
{
MXC_USB->dev_cn = MXC_F_USB_DEV_CN_URST;
MXC_USB->dev_cn = 0;
MXC_USB->cn = 0;
}
void USBHAL::connect(void)
{
// enable interrupts
MXC_USB->dev_inten |= CONNECT_INTS;
// allow interrupts on ep0
MXC_USB->ep[0] |= MXC_F_USB_EP_INT_EN;
// pullup enable
MXC_USB->dev_cn |= (MXC_F_USB_DEV_CN_CONNECT | MXC_F_USB_DEV_CN_FIFO_MODE);
}
void USBHAL::disconnect(void)
{
// disable interrupts
MXC_USB->dev_inten &= ~CONNECT_INTS;
// disable pullup
MXC_USB->dev_cn &= ~MXC_F_USB_DEV_CN_CONNECT;
}
void USBHAL::configureDevice(void)
{
// do nothing
}
void USBHAL::unconfigureDevice(void)
{
// reset endpoints
for (int i = 0; i < MXC_USB_NUM_EP; i++) {
// Disable endpoint and clear the data toggle
MXC_USB->ep[i] &= ~MXC_F_USB_EP_DIR;
MXC_USB->ep[i] |= MXC_F_USB_EP_DT;
}
}
void USBHAL::setAddress(uint8_t address)
{
// do nothing
}
void USBHAL::remoteWakeup(void)
{
// do nothing
}
static ep_buffer_t *get_desc(uint8_t endpoint)
{
uint8_t epnum = EP_NUM(endpoint);
ep_buffer_t *desc;
if (epnum == 0) {
if (IN_EP(endpoint)) {
desc = &ep_buffer_descriptor.ep0.in_buffer;
} else {
desc = &ep_buffer_descriptor.ep0.out_buffer;
}
} else {
desc = &ep_buffer_descriptor.ep[epnum - 1];
}
return desc;
}
void USBHAL::EP0setup(uint8_t *buffer)
{
memcpy(buffer, (void*)&MXC_USB->setup0, 8); // setup packet is fixed at 8 bytes
}
void USBHAL::EP0read(void)
{
if (control_state == CTRL_IN) {
// This is the status stage. ACK.
MXC_USB->ep[0] |= MXC_F_USB_EP_ST_ACK;
control_state = CTRL_NONE;
return;
}
control_state = CTRL_OUT;
endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0);
}
void USBHAL::EP0readStage(void)
{
// do nothing
}
uint32_t USBHAL::EP0getReadResult(uint8_t *buffer)
{
uint32_t size;
if (MXC_USB->out_owner & 1) {
return 0;
}
// get the packet length and contents
ep_buffer_t *desc = get_desc(EP0OUT);
size = desc->buf0_desc;
memcpy(buffer, aligned_buffer[0], size);
return size;
}
void USBHAL::EP0write(uint8_t *buffer, uint32_t size)
{
if ((size == 0) && (control_state != CTRL_IN)) {
// This is a status stage ACK. Handle in hardware.
MXC_USB->ep[0] |= MXC_F_USB_EP_ST_ACK;
control_state = CTRL_NONE;
return;
}
control_state = CTRL_IN;
endpointWrite(EP0IN, buffer, size);
}
void USBHAL::EP0stall(void)
{
stallEndpoint(0);
}
EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize)
{
uint8_t epnum = EP_NUM(endpoint);
if ((endpoint >= NUMBER_OF_PHYSICAL_ENDPOINTS) || IN_EP(endpoint)) {
return EP_INVALID;
}
if (maximumSize > MXC_USB_MAX_PACKET) {
return EP_INVALID;
}
uint32_t mask = (1 << epnum);
if (MXC_USB->out_owner & mask) {
return EP_INVALID;
}
ep_buffer_t *desc = get_desc(endpoint);
desc->buf0_desc = maximumSize;
desc->buf0_address = (uint32_t)aligned_buffer[epnum];
MXC_USB->out_owner = mask;
return EP_PENDING;
}
EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead)
{
if ((endpoint >= NUMBER_OF_PHYSICAL_ENDPOINTS) || IN_EP(endpoint)) {
return EP_INVALID;
}
uint32_t mask = (1 << EP_NUM(endpoint));
if (MXC_USB->out_owner & mask) {
return EP_PENDING;
}
// get the packet length and contents
ep_buffer_t *desc = get_desc(endpoint);
*bytesRead = desc->buf0_desc;
memcpy(data, aligned_buffer[EP_NUM(endpoint)], *bytesRead);
return EP_COMPLETED;
}
EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size)
{
uint8_t epnum = EP_NUM(endpoint);
if ((endpoint >= NUMBER_OF_PHYSICAL_ENDPOINTS) || OUT_EP(endpoint)) {
return EP_INVALID;
}
if (size > MXC_USB_MAX_PACKET) {
return EP_INVALID;
}
uint32_t mask = (1 << epnum);
if (MXC_USB->in_owner & mask) {
return EP_INVALID;
}
memcpy(aligned_buffer[epnum], data, size);
ep_buffer_t *desc = get_desc(endpoint);
desc->buf0_desc = size;
desc->buf0_address = (uint32_t)aligned_buffer[epnum];
// start the DMA
MXC_USB->in_owner = mask;
return EP_PENDING;
}
EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint)
{
uint32_t mask = (1 << EP_NUM(endpoint));
if (MXC_USB->in_owner & mask) {
return EP_PENDING;
}
return EP_COMPLETED;
}
void USBHAL::stallEndpoint(uint8_t endpoint)
{
uint8_t epnum = EP_NUM(endpoint);
if (epnum == 0) {
MXC_USB->ep[epnum] |= MXC_F_USB_EP_ST_STALL;
}
MXC_USB->ep[epnum] |= MXC_F_USB_EP_STALL;
}
void USBHAL::unstallEndpoint(uint8_t endpoint)
{
MXC_USB->ep[EP_NUM(endpoint)] &= ~MXC_F_USB_EP_STALL;
}
bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options)
{
uint8_t epnum = EP_NUM(endpoint);
uint32_t ep_ctrl;
if (epnum >= NUMBER_OF_PHYSICAL_ENDPOINTS) {
return false;
}
if (IN_EP(endpoint)) {
ep_ctrl = (MXC_V_USB_EP_DIR_IN << MXC_F_USB_EP_DIR_POS);
} else {
ep_ctrl = (MXC_S_USB_EP_DIR_OUT << MXC_F_USB_EP_DIR_POS);
}
ep_ctrl |= (MXC_F_USB_EP_DT | MXC_F_USB_EP_INT_EN);
MXC_USB->ep[epnum] = ep_ctrl;
return true;
}
bool USBHAL::getEndpointStallState(unsigned char endpoint)
{
return !!(MXC_USB->ep[endpoint] & MXC_F_USB_EP_STALL);
}
void USBHAL::_usbisr(void)
{
instance->usbisr();
}
void USBHAL::usbisr(void)
{
// get and clear irqs
uint32_t irq_flags = MXC_USB->dev_intfl;
MXC_USB->dev_intfl = irq_flags;
// process only enabled interrupts
irq_flags &= MXC_USB->dev_inten;
// suspend
if (irq_flags & MXC_F_USB_DEV_INTFL_SUSP) {
suspendStateChanged(1);
}
// bus reset
if (irq_flags & MXC_F_USB_DEV_INTFL_BRST) {
// reset endpoints
for (int i = 0; i < MXC_USB_NUM_EP; i++) {
// Disable endpoint and clear the data toggle
MXC_USB->ep[i] &= ~MXC_F_USB_EP_DIR;
MXC_USB->ep[i] |= MXC_F_USB_EP_DT;
}
// clear driver state
control_state = CTRL_NONE;
busReset();
// no need to process events after reset
return;
}
// Setup packet
if (irq_flags & MXC_F_USB_DEV_INTFL_SETUP) {
control_state = CTRL_SETUP;
EP0setupCallback();
}
// IN packets
if (irq_flags & MXC_F_USB_DEV_INTFL_EP_IN) {
// get and clear IN irqs
uint32_t in_irqs = MXC_USB->in_int;
MXC_USB->in_int = in_irqs;
if (in_irqs & 1) {
EP0in();
}
for (uint8_t epnum = 1; epnum < NUMBER_OF_LOGICAL_ENDPOINTS; epnum++) {
uint32_t irq_mask = (1 << epnum);
if (in_irqs & irq_mask) {
uint8_t endpoint = (epnum << 1) | DIR_IN;
(instance->*(epCallback[endpoint]))();
}
}
}
// OUT packets
if (irq_flags & MXC_F_USB_DEV_INTFL_EP_OUT) {
// get and clear OUT irqs
uint32_t out_irqs = MXC_USB->out_int;
MXC_USB->out_int = out_irqs;
if (out_irqs & 1) {
EP0out();
}
for (uint8_t epnum = 1; epnum < NUMBER_OF_LOGICAL_ENDPOINTS; epnum++) {
uint32_t irq_mask = (1 << epnum);
if (out_irqs & irq_mask) {
uint8_t endpoint = (epnum << 1) | DIR_OUT;
(instance->*(epCallback[endpoint]))();
}
}
}
}
#endif