Keyboard firmwares for Atmel AVR and Cortex-M
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

arm_fir_lattice_q15.c 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
  3. *
  4. * $Date: 17. January 2013
  5. * $Revision: V1.4.1
  6. *
  7. * Project: CMSIS DSP Library
  8. * Title: arm_fir_lattice_q15.c
  9. *
  10. * Description: Q15 FIR lattice filter processing function.
  11. *
  12. * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. * - Redistributions of source code must retain the above copyright
  18. * notice, this list of conditions and the following disclaimer.
  19. * - Redistributions in binary form must reproduce the above copyright
  20. * notice, this list of conditions and the following disclaimer in
  21. * the documentation and/or other materials provided with the
  22. * distribution.
  23. * - Neither the name of ARM LIMITED nor the names of its contributors
  24. * may be used to endorse or promote products derived from this
  25. * software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.
  39. * -------------------------------------------------------------------- */
  40. #include "arm_math.h"
  41. /**
  42. * @ingroup groupFilters
  43. */
  44. /**
  45. * @addtogroup FIR_Lattice
  46. * @{
  47. */
  48. /**
  49. * @brief Processing function for the Q15 FIR lattice filter.
  50. * @param[in] *S points to an instance of the Q15 FIR lattice structure.
  51. * @param[in] *pSrc points to the block of input data.
  52. * @param[out] *pDst points to the block of output data
  53. * @param[in] blockSize number of samples to process.
  54. * @return none.
  55. */
  56. void arm_fir_lattice_q15(
  57. const arm_fir_lattice_instance_q15 * S,
  58. q15_t * pSrc,
  59. q15_t * pDst,
  60. uint32_t blockSize)
  61. {
  62. q15_t *pState; /* State pointer */
  63. q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
  64. q15_t *px; /* temporary state pointer */
  65. q15_t *pk; /* temporary coefficient pointer */
  66. #ifndef ARM_MATH_CM0_FAMILY
  67. /* Run the below code for Cortex-M4 and Cortex-M3 */
  68. q31_t fcurnt1, fnext1, gcurnt1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */
  69. q31_t fcurnt2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */
  70. q31_t fcurnt3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */
  71. q31_t fcurnt4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */
  72. uint32_t numStages = S->numStages; /* Number of stages in the filter */
  73. uint32_t blkCnt, stageCnt; /* temporary variables for counts */
  74. pState = &S->pState[0];
  75. blkCnt = blockSize >> 2u;
  76. /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
  77. ** a second loop below computes the remaining 1 to 3 samples. */
  78. while(blkCnt > 0u)
  79. {
  80. /* Read two samples from input buffer */
  81. /* f0(n) = x(n) */
  82. fcurnt1 = *pSrc++;
  83. fcurnt2 = *pSrc++;
  84. /* Initialize coeff pointer */
  85. pk = (pCoeffs);
  86. /* Initialize state pointer */
  87. px = pState;
  88. /* Read g0(n-1) from state */
  89. gcurnt1 = *px;
  90. /* Process first sample for first tap */
  91. /* f1(n) = f0(n) + K1 * g0(n-1) */
  92. fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
  93. fnext1 = __SSAT(fnext1, 16);
  94. /* g1(n) = f0(n) * K1 + g0(n-1) */
  95. gnext1 = (q31_t) ((fcurnt1 * (*pk)) >> 15u) + gcurnt1;
  96. gnext1 = __SSAT(gnext1, 16);
  97. /* Process second sample for first tap */
  98. /* for sample 2 processing */
  99. fnext2 = (q31_t) ((fcurnt1 * (*pk)) >> 15u) + fcurnt2;
  100. fnext2 = __SSAT(fnext2, 16);
  101. gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + fcurnt1;
  102. gnext2 = __SSAT(gnext2, 16);
  103. /* Read next two samples from input buffer */
  104. /* f0(n+2) = x(n+2) */
  105. fcurnt3 = *pSrc++;
  106. fcurnt4 = *pSrc++;
  107. /* Copy only last input samples into the state buffer
  108. which is used for next four samples processing */
  109. *px++ = (q15_t) fcurnt4;
  110. /* Process third sample for first tap */
  111. fnext3 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + fcurnt3;
  112. fnext3 = __SSAT(fnext3, 16);
  113. gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + fcurnt2;
  114. gnext3 = __SSAT(gnext3, 16);
  115. /* Process fourth sample for first tap */
  116. fnext4 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + fcurnt4;
  117. fnext4 = __SSAT(fnext4, 16);
  118. gnext4 = (q31_t) ((fcurnt4 * (*pk++)) >> 15u) + fcurnt3;
  119. gnext4 = __SSAT(gnext4, 16);
  120. /* Update of f values for next coefficient set processing */
  121. fcurnt1 = fnext1;
  122. fcurnt2 = fnext2;
  123. fcurnt3 = fnext3;
  124. fcurnt4 = fnext4;
  125. /* Loop unrolling. Process 4 taps at a time . */
  126. stageCnt = (numStages - 1u) >> 2;
  127. /* Loop over the number of taps. Unroll by a factor of 4.
  128. ** Repeat until we've computed numStages-3 coefficients. */
  129. /* Process 2nd, 3rd, 4th and 5th taps ... here */
  130. while(stageCnt > 0u)
  131. {
  132. /* Read g1(n-1), g3(n-1) .... from state */
  133. gcurnt1 = *px;
  134. /* save g1(n) in state buffer */
  135. *px++ = (q15_t) gnext4;
  136. /* Process first sample for 2nd, 6th .. tap */
  137. /* Sample processing for K2, K6.... */
  138. /* f1(n) = f0(n) + K1 * g0(n-1) */
  139. fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
  140. fnext1 = __SSAT(fnext1, 16);
  141. /* Process second sample for 2nd, 6th .. tap */
  142. /* for sample 2 processing */
  143. fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2;
  144. fnext2 = __SSAT(fnext2, 16);
  145. /* Process third sample for 2nd, 6th .. tap */
  146. fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3;
  147. fnext3 = __SSAT(fnext3, 16);
  148. /* Process fourth sample for 2nd, 6th .. tap */
  149. /* fnext4 = fcurnt4 + (*pk) * gnext3; */
  150. fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4;
  151. fnext4 = __SSAT(fnext4, 16);
  152. /* g1(n) = f0(n) * K1 + g0(n-1) */
  153. /* Calculation of state values for next stage */
  154. gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3;
  155. gnext4 = __SSAT(gnext4, 16);
  156. gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2;
  157. gnext3 = __SSAT(gnext3, 16);
  158. gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1;
  159. gnext2 = __SSAT(gnext2, 16);
  160. gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
  161. gnext1 = __SSAT(gnext1, 16);
  162. /* Read g2(n-1), g4(n-1) .... from state */
  163. gcurnt1 = *px;
  164. /* save g1(n) in state buffer */
  165. *px++ = (q15_t) gnext4;
  166. /* Sample processing for K3, K7.... */
  167. /* Process first sample for 3rd, 7th .. tap */
  168. /* f3(n) = f2(n) + K3 * g2(n-1) */
  169. fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fnext1;
  170. fcurnt1 = __SSAT(fcurnt1, 16);
  171. /* Process second sample for 3rd, 7th .. tap */
  172. fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fnext2;
  173. fcurnt2 = __SSAT(fcurnt2, 16);
  174. /* Process third sample for 3rd, 7th .. tap */
  175. fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fnext3;
  176. fcurnt3 = __SSAT(fcurnt3, 16);
  177. /* Process fourth sample for 3rd, 7th .. tap */
  178. fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fnext4;
  179. fcurnt4 = __SSAT(fcurnt4, 16);
  180. /* Calculation of state values for next stage */
  181. /* g3(n) = f2(n) * K3 + g2(n-1) */
  182. gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15u) + gnext3;
  183. gnext4 = __SSAT(gnext4, 16);
  184. gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15u) + gnext2;
  185. gnext3 = __SSAT(gnext3, 16);
  186. gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15u) + gnext1;
  187. gnext2 = __SSAT(gnext2, 16);
  188. gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15u) + gcurnt1;
  189. gnext1 = __SSAT(gnext1, 16);
  190. /* Read g1(n-1), g3(n-1) .... from state */
  191. gcurnt1 = *px;
  192. /* save g1(n) in state buffer */
  193. *px++ = (q15_t) gnext4;
  194. /* Sample processing for K4, K8.... */
  195. /* Process first sample for 4th, 8th .. tap */
  196. /* f4(n) = f3(n) + K4 * g3(n-1) */
  197. fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
  198. fnext1 = __SSAT(fnext1, 16);
  199. /* Process second sample for 4th, 8th .. tap */
  200. /* for sample 2 processing */
  201. fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2;
  202. fnext2 = __SSAT(fnext2, 16);
  203. /* Process third sample for 4th, 8th .. tap */
  204. fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3;
  205. fnext3 = __SSAT(fnext3, 16);
  206. /* Process fourth sample for 4th, 8th .. tap */
  207. fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4;
  208. fnext4 = __SSAT(fnext4, 16);
  209. /* g4(n) = f3(n) * K4 + g3(n-1) */
  210. /* Calculation of state values for next stage */
  211. gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3;
  212. gnext4 = __SSAT(gnext4, 16);
  213. gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2;
  214. gnext3 = __SSAT(gnext3, 16);
  215. gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1;
  216. gnext2 = __SSAT(gnext2, 16);
  217. gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
  218. gnext1 = __SSAT(gnext1, 16);
  219. /* Read g2(n-1), g4(n-1) .... from state */
  220. gcurnt1 = *px;
  221. /* save g4(n) in state buffer */
  222. *px++ = (q15_t) gnext4;
  223. /* Sample processing for K5, K9.... */
  224. /* Process first sample for 5th, 9th .. tap */
  225. /* f5(n) = f4(n) + K5 * g4(n-1) */
  226. fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fnext1;
  227. fcurnt1 = __SSAT(fcurnt1, 16);
  228. /* Process second sample for 5th, 9th .. tap */
  229. fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fnext2;
  230. fcurnt2 = __SSAT(fcurnt2, 16);
  231. /* Process third sample for 5th, 9th .. tap */
  232. fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fnext3;
  233. fcurnt3 = __SSAT(fcurnt3, 16);
  234. /* Process fourth sample for 5th, 9th .. tap */
  235. fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fnext4;
  236. fcurnt4 = __SSAT(fcurnt4, 16);
  237. /* Calculation of state values for next stage */
  238. /* g5(n) = f4(n) * K5 + g4(n-1) */
  239. gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15u) + gnext3;
  240. gnext4 = __SSAT(gnext4, 16);
  241. gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15u) + gnext2;
  242. gnext3 = __SSAT(gnext3, 16);
  243. gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15u) + gnext1;
  244. gnext2 = __SSAT(gnext2, 16);
  245. gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15u) + gcurnt1;
  246. gnext1 = __SSAT(gnext1, 16);
  247. stageCnt--;
  248. }
  249. /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */
  250. stageCnt = (numStages - 1u) % 0x4u;
  251. while(stageCnt > 0u)
  252. {
  253. gcurnt1 = *px;
  254. /* save g value in state buffer */
  255. *px++ = (q15_t) gnext4;
  256. /* Process four samples for last three taps here */
  257. fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1;
  258. fnext1 = __SSAT(fnext1, 16);
  259. fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2;
  260. fnext2 = __SSAT(fnext2, 16);
  261. fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3;
  262. fnext3 = __SSAT(fnext3, 16);
  263. fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4;
  264. fnext4 = __SSAT(fnext4, 16);
  265. /* g1(n) = f0(n) * K1 + g0(n-1) */
  266. gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3;
  267. gnext4 = __SSAT(gnext4, 16);
  268. gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2;
  269. gnext3 = __SSAT(gnext3, 16);
  270. gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1;
  271. gnext2 = __SSAT(gnext2, 16);
  272. gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
  273. gnext1 = __SSAT(gnext1, 16);
  274. /* Update of f values for next coefficient set processing */
  275. fcurnt1 = fnext1;
  276. fcurnt2 = fnext2;
  277. fcurnt3 = fnext3;
  278. fcurnt4 = fnext4;
  279. stageCnt--;
  280. }
  281. /* The results in the 4 accumulators, store in the destination buffer. */
  282. /* y(n) = fN(n) */
  283. #ifndef ARM_MATH_BIG_ENDIAN
  284. *__SIMD32(pDst)++ = __PKHBT(fcurnt1, fcurnt2, 16);
  285. *__SIMD32(pDst)++ = __PKHBT(fcurnt3, fcurnt4, 16);
  286. #else
  287. *__SIMD32(pDst)++ = __PKHBT(fcurnt2, fcurnt1, 16);
  288. *__SIMD32(pDst)++ = __PKHBT(fcurnt4, fcurnt3, 16);
  289. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  290. blkCnt--;
  291. }
  292. /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
  293. ** No loop unrolling is used. */
  294. blkCnt = blockSize % 0x4u;
  295. while(blkCnt > 0u)
  296. {
  297. /* f0(n) = x(n) */
  298. fcurnt1 = *pSrc++;
  299. /* Initialize coeff pointer */
  300. pk = (pCoeffs);
  301. /* Initialize state pointer */
  302. px = pState;
  303. /* read g2(n) from state buffer */
  304. gcurnt1 = *px;
  305. /* for sample 1 processing */
  306. /* f1(n) = f0(n) + K1 * g0(n-1) */
  307. fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15u) + fcurnt1;
  308. fnext1 = __SSAT(fnext1, 16);
  309. /* g1(n) = f0(n) * K1 + g0(n-1) */
  310. gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
  311. gnext1 = __SSAT(gnext1, 16);
  312. /* save g1(n) in state buffer */
  313. *px++ = (q15_t) fcurnt1;
  314. /* f1(n) is saved in fcurnt1
  315. for next stage processing */
  316. fcurnt1 = fnext1;
  317. stageCnt = (numStages - 1u);
  318. /* stage loop */
  319. while(stageCnt > 0u)
  320. {
  321. /* read g2(n) from state buffer */
  322. gcurnt1 = *px;
  323. /* save g1(n) in state buffer */
  324. *px++ = (q15_t) gnext1;
  325. /* Sample processing for K2, K3.... */
  326. /* f2(n) = f1(n) + K2 * g1(n-1) */
  327. fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15u) + fcurnt1;
  328. fnext1 = __SSAT(fnext1, 16);
  329. /* g2(n) = f1(n) * K2 + g1(n-1) */
  330. gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15u) + gcurnt1;
  331. gnext1 = __SSAT(gnext1, 16);
  332. /* f1(n) is saved in fcurnt1
  333. for next stage processing */
  334. fcurnt1 = fnext1;
  335. stageCnt--;
  336. }
  337. /* y(n) = fN(n) */
  338. *pDst++ = __SSAT(fcurnt1, 16);
  339. blkCnt--;
  340. }
  341. #else
  342. /* Run the below code for Cortex-M0 */
  343. q31_t fcurnt, fnext, gcurnt, gnext; /* temporary variables */
  344. uint32_t numStages = S->numStages; /* Length of the filter */
  345. uint32_t blkCnt, stageCnt; /* temporary variables for counts */
  346. pState = &S->pState[0];
  347. blkCnt = blockSize;
  348. while(blkCnt > 0u)
  349. {
  350. /* f0(n) = x(n) */
  351. fcurnt = *pSrc++;
  352. /* Initialize coeff pointer */
  353. pk = (pCoeffs);
  354. /* Initialize state pointer */
  355. px = pState;
  356. /* read g0(n-1) from state buffer */
  357. gcurnt = *px;
  358. /* for sample 1 processing */
  359. /* f1(n) = f0(n) + K1 * g0(n-1) */
  360. fnext = ((gcurnt * (*pk)) >> 15u) + fcurnt;
  361. fnext = __SSAT(fnext, 16);
  362. /* g1(n) = f0(n) * K1 + g0(n-1) */
  363. gnext = ((fcurnt * (*pk++)) >> 15u) + gcurnt;
  364. gnext = __SSAT(gnext, 16);
  365. /* save f0(n) in state buffer */
  366. *px++ = (q15_t) fcurnt;
  367. /* f1(n) is saved in fcurnt
  368. for next stage processing */
  369. fcurnt = fnext;
  370. stageCnt = (numStages - 1u);
  371. /* stage loop */
  372. while(stageCnt > 0u)
  373. {
  374. /* read g1(n-1) from state buffer */
  375. gcurnt = *px;
  376. /* save g0(n-1) in state buffer */
  377. *px++ = (q15_t) gnext;
  378. /* Sample processing for K2, K3.... */
  379. /* f2(n) = f1(n) + K2 * g1(n-1) */
  380. fnext = ((gcurnt * (*pk)) >> 15u) + fcurnt;
  381. fnext = __SSAT(fnext, 16);
  382. /* g2(n) = f1(n) * K2 + g1(n-1) */
  383. gnext = ((fcurnt * (*pk++)) >> 15u) + gcurnt;
  384. gnext = __SSAT(gnext, 16);
  385. /* f1(n) is saved in fcurnt
  386. for next stage processing */
  387. fcurnt = fnext;
  388. stageCnt--;
  389. }
  390. /* y(n) = fN(n) */
  391. *pDst++ = __SSAT(fcurnt, 16);
  392. blkCnt--;
  393. }
  394. #endif /* #ifndef ARM_MATH_CM0_FAMILY */
  395. }
  396. /**
  397. * @} end of FIR_Lattice group
  398. */