1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
tmk_keyboard_custom/converter/usb_usb/usb_usb.cpp

369 lines
9.6 KiB
C++
Raw Normal View History

/*
Copyright 2016 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
// USB HID host
#include "Usb.h"
#include "usbhub.h"
#include "hid.h"
#include "hidboot.h"
#include "parser.h"
#include "keycode.h"
#include "util.h"
#include "print.h"
#include "debug.h"
#include "timer.h"
#include "matrix.h"
#include "led.h"
#include "action.h"
#include "host.h"
#define HID_MOUSE_ENABLE
#define HID_COMPOSITE_ENABLE
#define HID_KEYBOARD_COUNT 2
#define USB_HUB_COUNT 1
/* KEY CODE to Matrix
*
* HID keycode(1 byte):
* Higher 5 bits indicates ROW and lower 3 bits COL.
*
* 7 6 5 4 3 2 1 0
* +---------------+
* | ROW | COL |
* +---------------+
*
* Matrix space(16 * 16):
* r\c0123456789ABCDEF
* 0 +----------------+
* : | |
* : | |
* 16 +----------------+
*/
#define ROW_MASK 0xF0
#define COL_MASK 0x0F
#define CODE(row, col) (((row) << 4) | (col))
#define ROW(code) (((code) & ROW_MASK) >> 4)
#define COL(code) ((code) & COL_MASK)
#define ROW_BITS(code) (1 << COL(code))
// Integrated key state of all keyboards
static report_keyboard_t keyboard_report;
#ifdef HID_MOUSE_ENABLE
extern report_mouse_t mouse_report;
static uint8_t mouse_button;
#endif
static bool matrix_is_mod = false;
/*
* USB Host Shield HID keyboards
* This supports two cascaded hubs and four keyboards
*/
USB usb_host;
#ifdef USB_HUB_COUNT > 0
USBHub hub1(&usb_host);
#ifdef USB_HUB_COUNT > 1
USBHub hub2(&usb_host);
#endif
#endif
#ifdef HID_COMPOSITE_ENABLE
HIDBoot<HID_PROTOCOL_KEYBOARD | HID_PROTOCOL_MOUSE> composite(&usb_host);
#else
HIDBoot<HID_PROTOCOL_KEYBOARD> kbd1(&usb_host);
#endif
#if HID_KEYBOARD_COUNT > 1
HIDBoot<HID_PROTOCOL_KEYBOARD> kbd2(&usb_host);
#if HID_KEYBOARD_COUNT > 2
HIDBoot<HID_PROTOCOL_KEYBOARD> kbd3(&usb_host);
#if HID_KEYBOARD_COUNT > 3
HIDBoot<HID_PROTOCOL_KEYBOARD> kbd4(&usb_host);
#endif
#endif
#endif
KBDReportParser kbd_parser1;
#if HID_KEYBOARD_COUNT > 1
KBDReportParser kbd_parser2;
#if HID_KEYBOARD_COUNT > 1
KBDReportParser kbd_parser3;
#if HID_KEYBOARD_COUNT > 1
KBDReportParser kbd_parser4;
#endif
#endif
#endif
#ifdef HID_MOUSE_ENABLE
HIDBoot<HID_PROTOCOL_MOUSE> mouse1(&usb_host);
MOUSEReportParser mouse_parser1;
#endif
uint8_t matrix_rows(void) { return MATRIX_ROWS; }
uint8_t matrix_cols(void) { return MATRIX_COLS; }
bool matrix_has_ghost(void) { return false; }
void matrix_init(void) {
// USB Host Shield setup
usb_host.Init();
#ifdef HID_COMPOSITE_ENABLE
composite.SetReportParser(0, (HIDReportParser*)&kbd_parser1);
composite.SetReportParser(1, (HIDReportParser*)&mouse_parser1);
#else
kbd1.SetReportParser(0, (HIDReportParser*)&kbd_parser1);
#endif
#if HID_KEYBOARD_COUNT > 1
kbd2.SetReportParser(0, (HIDReportParser*)&kbd_parser2);
#if HID_KEYBOARD_COUNT > 2
kbd3.SetReportParser(0, (HIDReportParser*)&kbd_parser3);
#if HID_KEYBOARD_COUNT > 3
kbd4.SetReportParser(0, (HIDReportParser*)&kbd_parser4);
#endif
#endif
#endif
#ifdef HID_MOUSE_ENABLE
mouse1.SetReportParser(0, (HIDReportParser*)&mouse_parser1);
#endif
}
static void or_report(report_keyboard_t report) {
// integrate reports into keyboard_report
keyboard_report.mods |= report.mods;
for (uint8_t i = 0; i < KEYBOARD_REPORT_KEYS; i++) {
if (IS_ANY(report.keys[i])) {
for (uint8_t j = 0; j < KEYBOARD_REPORT_KEYS; j++) {
if (! keyboard_report.keys[j]) {
keyboard_report.keys[j] = report.keys[i];
break;
}
}
}
}
}
uint8_t matrix_scan(void) {
static uint16_t last_time_stamp1 = 0;
#if HID_KEYBOARD_COUNT > 1
static uint16_t last_time_stamp2 = 0;
#if HID_KEYBOARD_COUNT > 2
static uint16_t last_time_stamp3 = 0;
#if HID_KEYBOARD_COUNT > 3
static uint16_t last_time_stamp4 = 0;
#endif
#endif
#endif
// check report came from keyboards
if (kbd_parser1.time_stamp != last_time_stamp1
#if HID_KEYBOARD_COUNT > 1
|| kbd_parser2.time_stamp != last_time_stamp2
#if HID_KEYBOARD_COUNT > 2
|| kbd_parser3.time_stamp != last_time_stamp3
#if HID_KEYBOARD_COUNT > 3
|| kbd_parser4.time_stamp != last_time_stamp4
#endif
#endif
#endif
) {
last_time_stamp1 = kbd_parser1.time_stamp;
#if HID_KEYBOARD_COUNT > 1
last_time_stamp2 = kbd_parser2.time_stamp;
#if HID_KEYBOARD_COUNT > 2
last_time_stamp3 = kbd_parser3.time_stamp;
#if HID_KEYBOARD_COUNT > 3
last_time_stamp4 = kbd_parser4.time_stamp;
#endif
#endif
#endif
// clear and integrate all reports
keyboard_report = {};
or_report(kbd_parser1.report);
#if HID_KEYBOARD_COUNT > 1
or_report(kbd_parser2.report);
#if HID_KEYBOARD_COUNT > 2
or_report(kbd_parser3.report);
#if HID_KEYBOARD_COUNT > 3
or_report(kbd_parser4.report);
#endif
#endif
#endif
matrix_is_mod = true;
dprintf("state: %02X %02X", keyboard_report.mods, keyboard_report.reserved);
for (uint8_t i = 0; i < KEYBOARD_REPORT_KEYS; i++) {
dprintf(" %02X", keyboard_report.keys[i]);
}
dprint("\r\n");
} else {
matrix_is_mod = false;
}
#ifdef HID_MOUSE_ENABLE
static uint16_t last_mouse_time_stamp = 0;
if (last_mouse_time_stamp != mouse_parser1.time_stamp) {
last_mouse_time_stamp = mouse_parser1.time_stamp;
if (mouse_parser1.report.x || mouse_parser1.report.y) {
int8_t x = mouse_report.x;
int8_t y = mouse_report.y;
mouse_report.x = mouse_parser1.report.x;
mouse_report.y = mouse_parser1.report.y;
host_mouse_send(&mouse_report);
mouse_report.x = x;
mouse_report.y = y;
}
if (mouse_parser1.report.v) {
uint8_t code = 0;
if (mouse_parser1.report.v == 1) code = KC_MS_WH_UP;
else if (mouse_parser1.report.v == -1) code = KC_MS_WH_DOWN;
if (code) {
keyevent_t e;
e.key.row = ROW(code);
e.key.col = COL(code);
e.pressed = 1;
e.time = (timer_read() | 1); /* time should not be 0 */
action_exec(e);
e.pressed = 0;
e.time = (timer_read() | 1); /* time should not be 0 */
action_exec(e);
}
}
if (mouse_button != mouse_parser1.report.buttons) {
mouse_button = mouse_parser1.report.buttons;
matrix_is_mod |= true;
}
}
#endif
uint16_t timer;
timer = timer_read();
usb_host.Task();
timer = timer_elapsed(timer);
if (timer > 100) {
dprintf("host.Task: %d\n", timer);
}
return 1;
}
bool matrix_is_modified(void) {
return matrix_is_mod;
}
bool matrix_is_on(uint8_t row, uint8_t col) {
uint8_t code = CODE(row, col);
if (IS_MOD(code)) {
if (keyboard_report.mods & ROW_BITS(code)) {
return true;
}
}
for (uint8_t i = 0; i < KEYBOARD_REPORT_KEYS; i++) {
if (keyboard_report.keys[i] == code) {
return true;
}
}
return false;
}
matrix_row_t matrix_get_row(uint8_t row) {
uint16_t row_bits = 0;
if (IS_MOD(CODE(row, 0)) && keyboard_report.mods) {
row_bits |= keyboard_report.mods;
}
#ifdef HID_MOUSE_ENABLE
if (IS_MOUSEKEY(CODE(row, 0)) && mouse_button) {
if (mouse_button & (1<<0)) row_bits |= (1<<(KC_MS_BTN1 - KC_MS_UP));
if (mouse_button & (1<<1)) row_bits |= (1<<(KC_MS_BTN2 - KC_MS_UP));
if (mouse_button & (1<<2)) row_bits |= (1<<(KC_MS_BTN3 - KC_MS_UP));
if (mouse_button & (1<<3)) row_bits |= (1<<(KC_MS_BTN4 - KC_MS_UP));
if (mouse_button & (1<<4)) row_bits |= (1<<(KC_MS_BTN5 - KC_MS_UP));
}
#endif
for (uint8_t i = 0; i < KEYBOARD_REPORT_KEYS; i++) {
if (IS_ANY(keyboard_report.keys[i])) {
if (row == ROW(keyboard_report.keys[i])) {
row_bits |= ROW_BITS(keyboard_report.keys[i]);
}
}
}
return row_bits;
}
uint8_t matrix_key_count(void) {
uint8_t count = 0;
count += bitpop(keyboard_report.mods);
for (uint8_t i = 0; i < KEYBOARD_REPORT_KEYS; i++) {
if (IS_ANY(keyboard_report.keys[i])) {
count++;
}
}
return count;
}
void matrix_print(void) {
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < matrix_rows(); row++) {
xprintf("%02d: ", row);
print_bin_reverse16(matrix_get_row(row));
print("\n");
}
}
void led_set(uint8_t usb_led)
{
#ifdef HID_COMPOSITE_ENABLE
composite.SetReport(0, 0, 2, 0, 1, &usb_led);
#else
kbd1.SetReport(0, 0, 2, 0, 1, &usb_led);
#endif
#if HID_KEYBOARD_COUNT > 1
kbd2.SetReport(0, 0, 2, 0, 1, &usb_led);
#if HID_KEYBOARD_COUNT > 2
kbd3.SetReport(0, 0, 2, 0, 1, &usb_led);
#if HID_KEYBOARD_COUNT > 3
kbd4.SetReport(0, 0, 2, 0, 1, &usb_led);
#endif
#endif
#endif
}
extern bool kbd_init;
#ifdef __cplusplus
extern "C" {
void kbd_led_set(uint8_t usb_led)
{
if (kbd_init) {
dprintf("USB LED: %d\n", usb_led);
led_set(usb_led);
}
}
}
#endif