1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
tmk_keyboard_custom/keyboard/kimera/kimera.c
Kai Ryu 45e4210673 kimera: Improve flexibility of combining of keymap
- Assign combining in row/col mapping
- Remove macro TWO_HEADED_KIMERA
- Now Kimera and Two Headed Kimera can use a common firmware
2016-04-27 10:15:28 +09:00

387 lines
9.9 KiB
C

/*
Copyright 2014 Kai Ryu <kai1103@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define KIMERA_C
#include <stdbool.h>
#include <avr/eeprom.h>
#include "action.h"
#include "i2cmaster.h"
#include "kimera.h"
#include "debug.h"
static uint8_t row_mapping[PX_COUNT] = {
0, 1, 2, 3, 4, 5, 6, 7,
32, 33, 34, 35, 36, 37, 38, 39,
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED,
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED
};
static uint8_t col_mapping[PX_COUNT] = {
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55
};
static uint8_t row_count = 16;
static uint8_t col_count = 32;
static uint8_t row_left_count = 8;
static uint8_t col_left_count = 16;
static matrix_row_t col_left_mask;
static uint8_t combining = COMBINING_NONE;
static uint8_t data[EXP_COUNT][EXP_PORT_COUNT];
static uint8_t exp_in_use = 0;
static uint8_t exp_online = 0;
static uint8_t read_matrix_mapping(void);
static void write_matrix_mapping(void);
static void expander_init(uint8_t exp);
static uint8_t expander_write(uint8_t exp, uint8_t command, uint8_t *data);
static uint8_t expander_read(uint8_t exp, uint8_t command, uint8_t *data);
static uint8_t expander_write_output(uint8_t exp, uint8_t *data);
static uint8_t expander_write_inversion(uint8_t exp, uint8_t *data);
static uint8_t expander_write_config(uint8_t exp, uint8_t *data);
static uint8_t expander_read_input(uint8_t exp, uint8_t *data);
static void init_data(uint8_t value);
void kimera_init(void)
{
/* read config */
//write_matrix_mapping(); /* debug */
if (read_matrix_mapping()) {
write_matrix_mapping();
}
/* init i/o expanders */
kimera_scan();
}
uint8_t read_matrix_mapping(void)
{
uint8_t error = 0;
/* read number of rows and cols */
uint8_t rows = eeprom_read_byte(EECONFIG_ROW_COUNT);
uint8_t cols = eeprom_read_byte(EECONFIG_COL_COUNT);
if (rows == 0) error++;
else if (rows == UNCONFIGURED) error++;
else if (rows & COMBINING_BIT) {
if (combining != COMBINING_NONE) error++;
combining = COMBINING_ROW;
rows -= COMBINING_BIT;
}
if (cols == 0) error++;
else if (cols == UNCONFIGURED) error++;
else if (cols & COMBINING_BIT) {
if (combining != COMBINING_NONE) error++;
combining = COMBINING_COL;
cols -= COMBINING_BIT;
}
if (rows + cols > PX_COUNT) error++;
if (error) return error;
row_count = rows;
col_count = cols;
if (combining != COMBINING_NONE) {
row_left_count = (rows + 1) / 2;
col_left_count = (cols + 1) / 2;
col_left_mask = (1 << col_left_count) - 1;
}
/* read row mapping */
uint8_t *mapping = EECONFIG_ROW_COL_MAPPING;
uint8_t exp;
for (uint8_t i = 0; i < PX_COUNT; i++) {
if (i < row_count) {
row_mapping[i] = eeprom_read_byte(mapping++);
if (row_mapping[i] >= PX_COUNT) {
error++;
}
else {
exp = PX_TO_EXP(row_mapping[i]);
exp_in_use |= (1<<exp);
}
}
else {
row_mapping[i] = UNCONFIGURED;
}
}
/* read col mapping*/
for (uint8_t i = 0; i < PX_COUNT; i++) {
if (i < col_count) {
col_mapping[i] = eeprom_read_byte(mapping++);
if (col_mapping[i] >= PX_COUNT) {
error++;
}
else {
exp = PX_TO_EXP(col_mapping[i]);
exp_in_use |= (1<<exp);
}
}
else {
col_mapping[i] = UNCONFIGURED;
}
}
return error;
}
void write_matrix_mapping(void)
{
/* write number of rows and cols */
eeprom_write_byte(EECONFIG_ROW_COUNT, row_count);
eeprom_write_byte(EECONFIG_COL_COUNT, col_count);
/* write row mapping */
uint8_t *mapping = EECONFIG_ROW_COL_MAPPING;
for (uint8_t row = 0; row < row_count; row++) {
eeprom_write_byte(mapping++, row_mapping[row]);
}
/* write col mapping */
for (uint8_t col = 0; col < col_count; col++) {
eeprom_write_byte(mapping++, col_mapping[col]);
}
}
void kimera_scan(void)
{
uint8_t ret;
dprintf("exp in use: %d\n", exp_in_use);
dprintf("exp online: %d\n", exp_online);
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
if (exp_in_use & (1<<exp)) {
ret = i2c_start(EXP_ADDR(exp) | I2C_WRITE);
if (ret == 0) {
i2c_stop();
if ((exp_online & (1<<exp)) == 0) {
xprintf("found: %d\n", exp);
exp_online |= (1<<exp);
expander_init(exp);
clear_keyboard();
}
}
else {
if ((exp_online & (1<<exp)) != 0) {
xprintf("lost: %d\n", exp);
exp_online &= ~(1<<exp);
clear_keyboard();
}
}
}
}
}
inline
uint8_t kimera_matrix_rows(void)
{
if (combining == COMBINING_ROW) {
return row_left_count;
}
else {
return row_count;
}
}
inline
uint8_t kimera_matrix_cols(void)
{
if (combining == COMBINING_COL) {
return col_left_count;
}
else {
return col_count;
}
}
void kimera_read_cols(void)
{
/* read all input registers */
init_data(0xFF);
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
expander_read_input(exp, data[exp]);
}
}
uint8_t kimera_get_col(uint8_t row, uint8_t col)
{
if (combining == COMBINING_ROW) {
if (row >= row_left_count) {
col += col_left_count;
}
}
uint8_t px = col_mapping[col];
if (px != UNCONFIGURED) {
if (!(data[PX_TO_EXP(px)][PX_TO_PORT(px)] & (1 << PX_TO_PIN(px)))) {
return 1;
}
}
return 0;
}
matrix_row_t kimera_read_row(uint8_t row)
{
kimera_read_cols();
/* make cols */
matrix_row_t cols = 0;
for (uint8_t col = 0; col < col_count; col++) {
uint8_t px = col_mapping[col];
if (px != UNCONFIGURED) {
if (!(data[PX_TO_EXP(px)][PX_TO_PORT(px)] & (1 << PX_TO_PIN(px)))) {
cols |= (1UL << col);
}
}
}
if (combining == COMBINING_COL) {
if (row < row_left_count) {
cols &= col_left_mask;
}
else {
cols >>= col_left_count;
}
}
return cols;
}
void kimera_unselect_rows(void)
{
/* set all output registers to 0xFF */
init_data(0xFF);
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
expander_write_config(exp, data[exp]);
}
}
void kimera_select_row(uint8_t row)
{
/* set selected row to low */
init_data(0xFF);
uint8_t px = row_mapping[row];
if (px != UNCONFIGURED) {
uint8_t exp = PX_TO_EXP(px);
data[exp][PX_TO_PORT(px)] &= ~(1 << PX_TO_PIN(px));
expander_write_config(exp, data[exp]);
}
if (combining == COMBINING_ROW) {
if (row < row_left_count) {
kimera_select_row(row + row_left_count);
}
}
}
void expander_init(uint8_t exp)
{
init_data(0x00);
/* write inversion register */
/*
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
expander_write_inversion(exp, data[exp]);
}
*/
/* set output bit */
/*
for (uint8_t row = 0; row < row_count; row++) {
uint8_t px = row_mapping[row];
if (px != UNCONFIGURED) {
data[PX_TO_EXP(px)][PX_TO_PORT(px)] &= ~(1 << PX_TO_PIN(px));
}
}
*/
/* write config registers */
//expander_write_config(exp, data[exp]);
/* write output registers */
expander_write_output(exp, data[exp]);
}
uint8_t expander_write(uint8_t exp, uint8_t command, uint8_t *data)
{
if ((exp_online & (1<<exp)) == 0) {
return 0;
}
uint8_t addr = EXP_ADDR(exp);
uint8_t ret;
ret = i2c_start(addr | I2C_WRITE);
if (ret) goto stop;
ret = i2c_write(command);
if (ret) goto stop;
ret = i2c_write(*data++);
if (ret) goto stop;
ret = i2c_write(*data);
stop:
i2c_stop();
return ret;
}
uint8_t expander_read(uint8_t exp, uint8_t command, uint8_t *data)
{
if ((exp_online & (1<<exp)) == 0) {
return 0;
}
uint8_t addr = EXP_ADDR(exp);
uint8_t ret;
ret = i2c_start(addr | I2C_WRITE);
if (ret) goto stop;
ret = i2c_write(command);
if (ret) goto stop;
ret = i2c_rep_start(addr | I2C_READ);
if (ret) goto stop;
*data++ = i2c_readAck();
*data = i2c_readNak();
stop:
i2c_stop();
return ret;
}
inline
uint8_t expander_write_output(uint8_t exp, uint8_t *data)
{
return expander_write(exp, EXP_COMM_OUTPUT_0, data);
}
inline
uint8_t expander_write_inversion(uint8_t exp, uint8_t *data)
{
return expander_write(exp, EXP_COMM_INVERSION_0, data);
}
inline
uint8_t expander_write_config(uint8_t exp, uint8_t *data)
{
return expander_write(exp, EXP_COMM_CONFIG_0, data);
}
inline
uint8_t expander_read_input(uint8_t exp, uint8_t *data)
{
return expander_read(exp, EXP_COMM_INPUT_0, data);
}
void init_data(uint8_t value)
{
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
for (uint8_t port = 0; port < EXP_PORT_COUNT; port++) {
data[exp][port] = value;
}
}
}