1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
tmk_keyboard_custom/tool/mbed/mbed-sdk/libraries/USBDevice/USBMSD/USBMSD.cpp
Jun Wako 1fe4406f37 Squashed 'tmk_core/' changes from 7967731..b9e0ea0
b9e0ea0 Merge commit '7fa9d8bdea3773d1195b04d98fcf27cf48ddd81d' as 'tool/mbed/mbed-sdk'
7fa9d8b Squashed 'tool/mbed/mbed-sdk/' content from commit 7c21ce5

git-subtree-dir: tmk_core
git-subtree-split: b9e0ea08cb940de20b3610ecdda18e9d8cd7c552
2015-04-24 16:26:14 +09:00

656 lines
18 KiB
C++

/* Copyright (c) 2010-2011 mbed.org, MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of this software
* and associated documentation files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
* BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "stdint.h"
#include "USBMSD.h"
#define DISK_OK 0x00
#define NO_INIT 0x01
#define NO_DISK 0x02
#define WRITE_PROTECT 0x04
#define CBW_Signature 0x43425355
#define CSW_Signature 0x53425355
// SCSI Commands
#define TEST_UNIT_READY 0x00
#define REQUEST_SENSE 0x03
#define FORMAT_UNIT 0x04
#define INQUIRY 0x12
#define MODE_SELECT6 0x15
#define MODE_SENSE6 0x1A
#define START_STOP_UNIT 0x1B
#define MEDIA_REMOVAL 0x1E
#define READ_FORMAT_CAPACITIES 0x23
#define READ_CAPACITY 0x25
#define READ10 0x28
#define WRITE10 0x2A
#define VERIFY10 0x2F
#define READ12 0xA8
#define WRITE12 0xAA
#define MODE_SELECT10 0x55
#define MODE_SENSE10 0x5A
// MSC class specific requests
#define MSC_REQUEST_RESET 0xFF
#define MSC_REQUEST_GET_MAX_LUN 0xFE
#define DEFAULT_CONFIGURATION (1)
// max packet size
#define MAX_PACKET MAX_PACKET_SIZE_EPBULK
// CSW Status
enum Status {
CSW_PASSED,
CSW_FAILED,
CSW_ERROR,
};
USBMSD::USBMSD(uint16_t vendor_id, uint16_t product_id, uint16_t product_release): USBDevice(vendor_id, product_id, product_release) {
stage = READ_CBW;
memset((void *)&cbw, 0, sizeof(CBW));
memset((void *)&csw, 0, sizeof(CSW));
page = NULL;
}
USBMSD::~USBMSD() {
disconnect();
}
// Called in ISR context to process a class specific request
bool USBMSD::USBCallback_request(void) {
bool success = false;
CONTROL_TRANSFER * transfer = getTransferPtr();
static uint8_t maxLUN[1] = {0};
if (transfer->setup.bmRequestType.Type == CLASS_TYPE) {
switch (transfer->setup.bRequest) {
case MSC_REQUEST_RESET:
reset();
success = true;
break;
case MSC_REQUEST_GET_MAX_LUN:
transfer->remaining = 1;
transfer->ptr = maxLUN;
transfer->direction = DEVICE_TO_HOST;
success = true;
break;
default:
break;
}
}
return success;
}
bool USBMSD::connect(bool blocking) {
//disk initialization
if (disk_status() & NO_INIT) {
if (disk_initialize()) {
return false;
}
}
// get number of blocks
BlockCount = disk_sectors();
// get memory size
MemorySize = disk_size();
if (BlockCount > 0) {
BlockSize = MemorySize / BlockCount;
if (BlockSize != 0) {
free(page);
page = (uint8_t *)malloc(BlockSize * sizeof(uint8_t));
if (page == NULL)
return false;
}
} else {
return false;
}
//connect the device
USBDevice::connect(blocking);
return true;
}
void USBMSD::disconnect() {
USBDevice::disconnect();
//De-allocate MSD page size:
free(page);
page = NULL;
}
void USBMSD::reset() {
stage = READ_CBW;
}
// Called in ISR context called when a data is received
bool USBMSD::EPBULK_OUT_callback() {
uint32_t size = 0;
uint8_t buf[MAX_PACKET_SIZE_EPBULK];
readEP(EPBULK_OUT, buf, &size, MAX_PACKET_SIZE_EPBULK);
switch (stage) {
// the device has to decode the CBW received
case READ_CBW:
CBWDecode(buf, size);
break;
// the device has to receive data from the host
case PROCESS_CBW:
switch (cbw.CB[0]) {
case WRITE10:
case WRITE12:
memoryWrite(buf, size);
break;
case VERIFY10:
memoryVerify(buf, size);
break;
}
break;
// an error has occured: stall endpoint and send CSW
default:
stallEndpoint(EPBULK_OUT);
csw.Status = CSW_ERROR;
sendCSW();
break;
}
//reactivate readings on the OUT bulk endpoint
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
// Called in ISR context when a data has been transferred
bool USBMSD::EPBULK_IN_callback() {
switch (stage) {
// the device has to send data to the host
case PROCESS_CBW:
switch (cbw.CB[0]) {
case READ10:
case READ12:
memoryRead();
break;
}
break;
//the device has to send a CSW
case SEND_CSW:
sendCSW();
break;
// the host has received the CSW -> we wait a CBW
case WAIT_CSW:
stage = READ_CBW;
break;
// an error has occured
default:
stallEndpoint(EPBULK_IN);
sendCSW();
break;
}
return true;
}
void USBMSD::memoryWrite (uint8_t * buf, uint16_t size) {
if ((addr + size) > MemorySize) {
size = MemorySize - addr;
stage = ERROR;
stallEndpoint(EPBULK_OUT);
}
// we fill an array in RAM of 1 block before writing it in memory
for (int i = 0; i < size; i++)
page[addr%BlockSize + i] = buf[i];
// if the array is filled, write it in memory
if (!((addr + size)%BlockSize)) {
if (!(disk_status() & WRITE_PROTECT)) {
disk_write(page, addr/BlockSize, 1);
}
}
addr += size;
length -= size;
csw.DataResidue -= size;
if ((!length) || (stage != PROCESS_CBW)) {
csw.Status = (stage == ERROR) ? CSW_FAILED : CSW_PASSED;
sendCSW();
}
}
void USBMSD::memoryVerify (uint8_t * buf, uint16_t size) {
uint32_t n;
if ((addr + size) > MemorySize) {
size = MemorySize - addr;
stage = ERROR;
stallEndpoint(EPBULK_OUT);
}
// beginning of a new block -> load a whole block in RAM
if (!(addr%BlockSize))
disk_read(page, addr/BlockSize, 1);
// info are in RAM -> no need to re-read memory
for (n = 0; n < size; n++) {
if (page[addr%BlockSize + n] != buf[n]) {
memOK = false;
break;
}
}
addr += size;
length -= size;
csw.DataResidue -= size;
if ( !length || (stage != PROCESS_CBW)) {
csw.Status = (memOK && (stage == PROCESS_CBW)) ? CSW_PASSED : CSW_FAILED;
sendCSW();
}
}
bool USBMSD::inquiryRequest (void) {
uint8_t inquiry[] = { 0x00, 0x80, 0x00, 0x01,
36 - 4, 0x80, 0x00, 0x00,
'M', 'B', 'E', 'D', '.', 'O', 'R', 'G',
'M', 'B', 'E', 'D', ' ', 'U', 'S', 'B', ' ', 'D', 'I', 'S', 'K', ' ', ' ', ' ',
'1', '.', '0', ' ',
};
if (!write(inquiry, sizeof(inquiry))) {
return false;
}
return true;
}
bool USBMSD::readFormatCapacity() {
uint8_t capacity[] = { 0x00, 0x00, 0x00, 0x08,
(uint8_t)((BlockCount >> 24) & 0xff),
(uint8_t)((BlockCount >> 16) & 0xff),
(uint8_t)((BlockCount >> 8) & 0xff),
(uint8_t)((BlockCount >> 0) & 0xff),
0x02,
(uint8_t)((BlockSize >> 16) & 0xff),
(uint8_t)((BlockSize >> 8) & 0xff),
(uint8_t)((BlockSize >> 0) & 0xff),
};
if (!write(capacity, sizeof(capacity))) {
return false;
}
return true;
}
bool USBMSD::readCapacity (void) {
uint8_t capacity[] = {
(uint8_t)(((BlockCount - 1) >> 24) & 0xff),
(uint8_t)(((BlockCount - 1) >> 16) & 0xff),
(uint8_t)(((BlockCount - 1) >> 8) & 0xff),
(uint8_t)(((BlockCount - 1) >> 0) & 0xff),
(uint8_t)((BlockSize >> 24) & 0xff),
(uint8_t)((BlockSize >> 16) & 0xff),
(uint8_t)((BlockSize >> 8) & 0xff),
(uint8_t)((BlockSize >> 0) & 0xff),
};
if (!write(capacity, sizeof(capacity))) {
return false;
}
return true;
}
bool USBMSD::write (uint8_t * buf, uint16_t size) {
if (size >= cbw.DataLength) {
size = cbw.DataLength;
}
stage = SEND_CSW;
if (!writeNB(EPBULK_IN, buf, size, MAX_PACKET_SIZE_EPBULK)) {
return false;
}
csw.DataResidue -= size;
csw.Status = CSW_PASSED;
return true;
}
bool USBMSD::modeSense6 (void) {
uint8_t sense6[] = { 0x03, 0x00, 0x00, 0x00 };
if (!write(sense6, sizeof(sense6))) {
return false;
}
return true;
}
void USBMSD::sendCSW() {
csw.Signature = CSW_Signature;
writeNB(EPBULK_IN, (uint8_t *)&csw, sizeof(CSW), MAX_PACKET_SIZE_EPBULK);
stage = WAIT_CSW;
}
bool USBMSD::requestSense (void) {
uint8_t request_sense[] = {
0x70,
0x00,
0x05, // Sense Key: illegal request
0x00,
0x00,
0x00,
0x00,
0x0A,
0x00,
0x00,
0x00,
0x00,
0x30,
0x01,
0x00,
0x00,
0x00,
0x00,
};
if (!write(request_sense, sizeof(request_sense))) {
return false;
}
return true;
}
void USBMSD::fail() {
csw.Status = CSW_FAILED;
sendCSW();
}
void USBMSD::CBWDecode(uint8_t * buf, uint16_t size) {
if (size == sizeof(cbw)) {
memcpy((uint8_t *)&cbw, buf, size);
if (cbw.Signature == CBW_Signature) {
csw.Tag = cbw.Tag;
csw.DataResidue = cbw.DataLength;
if ((cbw.CBLength < 1) || (cbw.CBLength > 16) ) {
fail();
} else {
switch (cbw.CB[0]) {
case TEST_UNIT_READY:
testUnitReady();
break;
case REQUEST_SENSE:
requestSense();
break;
case INQUIRY:
inquiryRequest();
break;
case MODE_SENSE6:
modeSense6();
break;
case READ_FORMAT_CAPACITIES:
readFormatCapacity();
break;
case READ_CAPACITY:
readCapacity();
break;
case READ10:
case READ12:
if (infoTransfer()) {
if ((cbw.Flags & 0x80)) {
stage = PROCESS_CBW;
memoryRead();
} else {
stallEndpoint(EPBULK_OUT);
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case WRITE10:
case WRITE12:
if (infoTransfer()) {
if (!(cbw.Flags & 0x80)) {
stage = PROCESS_CBW;
} else {
stallEndpoint(EPBULK_IN);
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case VERIFY10:
if (!(cbw.CB[1] & 0x02)) {
csw.Status = CSW_PASSED;
sendCSW();
break;
}
if (infoTransfer()) {
if (!(cbw.Flags & 0x80)) {
stage = PROCESS_CBW;
memOK = true;
} else {
stallEndpoint(EPBULK_IN);
csw.Status = CSW_ERROR;
sendCSW();
}
}
break;
case MEDIA_REMOVAL:
csw.Status = CSW_PASSED;
sendCSW();
break;
default:
fail();
break;
}
}
}
}
}
void USBMSD::testUnitReady (void) {
if (cbw.DataLength != 0) {
if ((cbw.Flags & 0x80) != 0) {
stallEndpoint(EPBULK_IN);
} else {
stallEndpoint(EPBULK_OUT);
}
}
csw.Status = CSW_PASSED;
sendCSW();
}
void USBMSD::memoryRead (void) {
uint32_t n;
n = (length > MAX_PACKET) ? MAX_PACKET : length;
if ((addr + n) > MemorySize) {
n = MemorySize - addr;
stage = ERROR;
}
// we read an entire block
if (!(addr%BlockSize))
disk_read(page, addr/BlockSize, 1);
// write data which are in RAM
writeNB(EPBULK_IN, &page[addr%BlockSize], n, MAX_PACKET_SIZE_EPBULK);
addr += n;
length -= n;
csw.DataResidue -= n;
if ( !length || (stage != PROCESS_CBW)) {
csw.Status = (stage == PROCESS_CBW) ? CSW_PASSED : CSW_FAILED;
stage = (stage == PROCESS_CBW) ? SEND_CSW : stage;
}
}
bool USBMSD::infoTransfer (void) {
uint32_t n;
// Logical Block Address of First Block
n = (cbw.CB[2] << 24) | (cbw.CB[3] << 16) | (cbw.CB[4] << 8) | (cbw.CB[5] << 0);
addr = n * BlockSize;
// Number of Blocks to transfer
switch (cbw.CB[0]) {
case READ10:
case WRITE10:
case VERIFY10:
n = (cbw.CB[7] << 8) | (cbw.CB[8] << 0);
break;
case READ12:
case WRITE12:
n = (cbw.CB[6] << 24) | (cbw.CB[7] << 16) | (cbw.CB[8] << 8) | (cbw.CB[9] << 0);
break;
}
length = n * BlockSize;
if (!cbw.DataLength) { // host requests no data
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
if (cbw.DataLength != length) {
if ((cbw.Flags & 0x80) != 0) {
stallEndpoint(EPBULK_IN);
} else {
stallEndpoint(EPBULK_OUT);
}
csw.Status = CSW_FAILED;
sendCSW();
return false;
}
return true;
}
// Called in ISR context
// Set configuration. Return false if the
// configuration is not supported.
bool USBMSD::USBCallback_setConfiguration(uint8_t configuration) {
if (configuration != DEFAULT_CONFIGURATION) {
return false;
}
// Configure endpoints > 0
addEndpoint(EPBULK_IN, MAX_PACKET_SIZE_EPBULK);
addEndpoint(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
//activate readings
readStart(EPBULK_OUT, MAX_PACKET_SIZE_EPBULK);
return true;
}
uint8_t * USBMSD::stringIinterfaceDesc() {
static uint8_t stringIinterfaceDescriptor[] = {
0x08, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'M',0,'S',0,'D',0 //bString iInterface - MSD
};
return stringIinterfaceDescriptor;
}
uint8_t * USBMSD::stringIproductDesc() {
static uint8_t stringIproductDescriptor[] = {
0x12, //bLength
STRING_DESCRIPTOR, //bDescriptorType 0x03
'M',0,'b',0,'e',0,'d',0,' ',0,'M',0,'S',0,'D',0 //bString iProduct - Mbed Audio
};
return stringIproductDescriptor;
}
uint8_t * USBMSD::configurationDesc() {
static uint8_t configDescriptor[] = {
// Configuration 1
9, // bLength
2, // bDescriptorType
LSB(9 + 9 + 7 + 7), // wTotalLength
MSB(9 + 9 + 7 + 7),
0x01, // bNumInterfaces
0x01, // bConfigurationValue: 0x01 is used to select this configuration
0x00, // iConfiguration: no string to describe this configuration
0xC0, // bmAttributes
100, // bMaxPower, device power consumption is 100 mA
// Interface 0, Alternate Setting 0, MSC Class
9, // bLength
4, // bDescriptorType
0x00, // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints
0x08, // bInterfaceClass
0x06, // bInterfaceSubClass
0x50, // bInterfaceProtocol
0x04, // iInterface
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
PHY_TO_DESC(EPBULK_IN), // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
0, // bInterval
// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
7, // bLength
5, // bDescriptorType
PHY_TO_DESC(EPBULK_OUT), // bEndpointAddress
0x02, // bmAttributes (0x02=bulk)
LSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (LSB)
MSB(MAX_PACKET_SIZE_EPBULK),// wMaxPacketSize (MSB)
0 // bInterval
};
return configDescriptor;
}