390 行
9.6 KiB
C
390 行
9.6 KiB
C
/*
|
|
Copyright 2014 Kai Ryu <kai1103@gmail.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#define KIMERA_C
|
|
|
|
#include <stdbool.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/interrupt.h>
|
|
#include <avr/wdt.h>
|
|
#include <util/delay.h>
|
|
#include "action.h"
|
|
#include "i2cmaster.h"
|
|
#include "kimera.h"
|
|
#include "debug.h"
|
|
|
|
#define wdt_intr_enable(value) \
|
|
__asm__ __volatile__ ( \
|
|
"in __tmp_reg__,__SREG__" "\n\t" \
|
|
"cli" "\n\t" \
|
|
"wdr" "\n\t" \
|
|
"sts %0,%1" "\n\t" \
|
|
"out __SREG__,__tmp_reg__" "\n\t" \
|
|
"sts %0,%2" "\n\t" \
|
|
: /* no outputs */ \
|
|
: "M" (_SFR_MEM_ADDR(_WD_CONTROL_REG)), \
|
|
"r" (_BV(_WD_CHANGE_BIT) | _BV(WDE)), \
|
|
"r" ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) | \
|
|
_BV(WDIE) | (value & 0x07)) ) \
|
|
: "r0" \
|
|
)
|
|
|
|
#define SCL_CLOCK 400000L
|
|
#define SCL_DURATION (1000000L/SCL_CLOCK)/2
|
|
extern uint8_t i2c_force_stop;
|
|
|
|
static uint8_t row_mapping[PX_COUNT] = {
|
|
#ifndef TWO_HEADED_KIMERA
|
|
0, 1, 2, 3, 4, 5, 6, 7,
|
|
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED,
|
|
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED,
|
|
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED
|
|
#else
|
|
0, 1, 2, 3, 4, 5, 6, 7,
|
|
32, 33, 34, 35, 36, 37, 38, 39,
|
|
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED,
|
|
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED
|
|
#endif
|
|
};
|
|
static uint8_t col_mapping[PX_COUNT] = {
|
|
#ifndef TWO_HEADED_KIMERA
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31,
|
|
UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED
|
|
#else
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23,
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55
|
|
#endif
|
|
};
|
|
#ifndef TWO_HEADED_KIMERA
|
|
static uint8_t row_count = 8;
|
|
static uint8_t col_count = 24;
|
|
#else
|
|
static uint8_t row_count = 16;
|
|
static uint8_t col_count = 32;
|
|
static uint8_t row_left_count = 8;
|
|
static uint8_t col_left_count = 16;
|
|
static matrix_row_t col_left_mask;
|
|
#endif
|
|
static uint8_t data[EXP_COUNT][EXP_PORT_COUNT];
|
|
static uint8_t exp_status = 0;
|
|
|
|
void kimera_init(void)
|
|
{
|
|
/* read config */
|
|
//write_matrix_mapping(); /* debug */
|
|
if (read_matrix_mapping()) {
|
|
write_matrix_mapping();
|
|
}
|
|
|
|
/* init i2c */
|
|
i2c_init();
|
|
|
|
/* init watch dog */
|
|
wdt_init();
|
|
|
|
/* init i/o expanders */
|
|
kimera_scan();
|
|
}
|
|
|
|
void wdt_init(void)
|
|
{
|
|
cli();
|
|
wdt_reset();
|
|
wdt_intr_enable(WDTO_1S);
|
|
sei();
|
|
}
|
|
|
|
uint8_t read_matrix_mapping(void)
|
|
{
|
|
uint8_t error = 0;
|
|
|
|
/* read number of rows and cols */
|
|
uint8_t rows = eeprom_read_byte(EECONFIG_ROW_COUNT);
|
|
uint8_t cols = eeprom_read_byte(EECONFIG_COL_COUNT);
|
|
if (rows == 0) error++;
|
|
if (rows == UNCONFIGURED) error++;
|
|
if (cols == 0) error++;
|
|
if (cols == UNCONFIGURED) error++;
|
|
if (rows + cols > PX_COUNT) error++;
|
|
if (error) return error;
|
|
row_count = rows;
|
|
col_count = cols;
|
|
#ifdef TWO_HEADED_KIMERA
|
|
row_left_count = (rows + 1) / 2;
|
|
col_left_count = (cols + 1) / 2;
|
|
col_left_mask = (1 << row_left_count) - 1;
|
|
#endif
|
|
|
|
/* read row mapping */
|
|
uint8_t *mapping = EECONFIG_ROW_COL_MAPPING;
|
|
for (uint8_t i = 0; i < PX_COUNT; i++) {
|
|
if (i < row_count) {
|
|
row_mapping[i] = eeprom_read_byte(mapping++);
|
|
if (row_mapping[i] >= PX_COUNT) error++;
|
|
}
|
|
else {
|
|
row_mapping[i] = UNCONFIGURED;
|
|
}
|
|
}
|
|
/* read col mapping*/
|
|
for (uint8_t i = 0; i < PX_COUNT; i++) {
|
|
if (i < col_count) {
|
|
col_mapping[i] = eeprom_read_byte(mapping++);
|
|
if (col_mapping[i] >= PX_COUNT) error++;
|
|
}
|
|
else {
|
|
col_mapping[i] = UNCONFIGURED;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void write_matrix_mapping(void)
|
|
{
|
|
/* write number of rows and cols */
|
|
eeprom_write_byte(EECONFIG_ROW_COUNT, row_count);
|
|
eeprom_write_byte(EECONFIG_COL_COUNT, col_count);
|
|
|
|
/* write row mapping */
|
|
uint8_t *mapping = EECONFIG_ROW_COL_MAPPING;
|
|
for (uint8_t row = 0; row < row_count; row++) {
|
|
eeprom_write_byte(mapping++, row_mapping[row]);
|
|
}
|
|
/* write col mapping */
|
|
for (uint8_t col = 0; col < col_count; col++) {
|
|
eeprom_write_byte(mapping++, col_mapping[col]);
|
|
}
|
|
}
|
|
|
|
void kimera_scan(void)
|
|
{
|
|
wdt_reset();
|
|
uint8_t ret;
|
|
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
|
|
ret = i2c_start(EXP_ADDR(exp) | I2C_READ);
|
|
if (exp_status & (1<<exp)) {
|
|
if (ret) {
|
|
dprintf("lost: %d\n", exp);
|
|
exp_status &= ~(1<<exp);
|
|
clear_keyboard();
|
|
}
|
|
}
|
|
else {
|
|
if (!ret) {
|
|
dprintf("found: %d\n", exp);
|
|
exp_status |= (1<<exp);
|
|
i2c_stop();
|
|
expander_init(exp);
|
|
clear_keyboard();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline
|
|
uint8_t kimera_matrix_rows(void)
|
|
{
|
|
return row_count;
|
|
}
|
|
|
|
inline
|
|
uint8_t kimera_matrix_cols(void)
|
|
{
|
|
#ifndef TWO_HEADED_KIMERA
|
|
return col_count;
|
|
#else
|
|
return col_left_count;
|
|
#endif
|
|
}
|
|
|
|
matrix_row_t kimera_read_cols(uint8_t row)
|
|
{
|
|
init_data(0xFF);
|
|
|
|
/* read all input registers */
|
|
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
|
|
expander_read_input(exp, data[exp]);
|
|
}
|
|
|
|
/* make cols */
|
|
matrix_row_t cols = 0;
|
|
for (uint8_t col = 0; col < col_count; col++) {
|
|
uint8_t px = col_mapping[col];
|
|
if (px != UNCONFIGURED) {
|
|
if (!(data[PX_TO_EXP(px)][PX_TO_PORT(px)] & (1 << PX_TO_PIN(px)))) {
|
|
cols |= (1UL << col);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef TWO_HEADED_KIMERA
|
|
if (row < row_left_count) {
|
|
cols &= col_left_mask;
|
|
}
|
|
else {
|
|
cols >>= col_left_count;
|
|
}
|
|
#endif
|
|
|
|
return cols;
|
|
}
|
|
|
|
void kimera_unselect_rows(void)
|
|
{
|
|
/* set all output registers to 0xFF */
|
|
init_data(0xFF);
|
|
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
|
|
expander_write_config(exp, data[exp]);
|
|
}
|
|
}
|
|
|
|
void kimera_select_row(uint8_t row)
|
|
{
|
|
/* set selected row to low */
|
|
init_data(0xFF);
|
|
uint8_t px = row_mapping[row];
|
|
if (px != UNCONFIGURED) {
|
|
uint8_t exp = PX_TO_EXP(px);
|
|
data[exp][PX_TO_PORT(px)] &= ~(1 << PX_TO_PIN(px));
|
|
expander_write_config(exp, data[exp]);
|
|
}
|
|
}
|
|
|
|
void expander_init(uint8_t exp)
|
|
{
|
|
init_data(0x00);
|
|
|
|
/* write inversion register */
|
|
/*
|
|
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
|
|
expander_write_inversion(exp, data[exp]);
|
|
}
|
|
*/
|
|
|
|
/* set output bit */
|
|
/*
|
|
for (uint8_t row = 0; row < row_count; row++) {
|
|
uint8_t px = row_mapping[row];
|
|
if (px != UNCONFIGURED) {
|
|
data[PX_TO_EXP(px)][PX_TO_PORT(px)] &= ~(1 << PX_TO_PIN(px));
|
|
}
|
|
}
|
|
*/
|
|
|
|
/* write config registers */
|
|
//expander_write_config(exp, data[exp]);
|
|
|
|
/* write output registers */
|
|
expander_write_output(exp, data[exp]);
|
|
}
|
|
|
|
uint8_t expander_write(uint8_t exp, uint8_t command, uint8_t *data)
|
|
{
|
|
wdt_reset();
|
|
uint8_t addr = EXP_ADDR(exp);
|
|
uint8_t ret;
|
|
ret = i2c_start(addr | I2C_WRITE);
|
|
if (ret) goto stop;
|
|
ret = i2c_write(command);
|
|
if (ret) goto stop;
|
|
ret = i2c_write(*data++);
|
|
if (ret) goto stop;
|
|
ret = i2c_write(*data);
|
|
stop:
|
|
i2c_stop();
|
|
return ret;
|
|
}
|
|
|
|
uint8_t expander_read(uint8_t exp, uint8_t command, uint8_t *data)
|
|
{
|
|
wdt_reset();
|
|
uint8_t addr = EXP_ADDR(exp);
|
|
uint8_t ret;
|
|
ret = i2c_start(addr | I2C_WRITE);
|
|
if (ret) goto stop;
|
|
ret = i2c_write(command);
|
|
if (ret) goto stop;
|
|
ret = i2c_start(addr | I2C_READ);
|
|
if (ret) goto stop;
|
|
*data++ = i2c_readAck();
|
|
*data = i2c_readNak();
|
|
stop:
|
|
i2c_stop();
|
|
return ret;
|
|
}
|
|
|
|
inline
|
|
uint8_t expander_write_output(uint8_t exp, uint8_t *data)
|
|
{
|
|
return expander_write(exp, EXP_COMM_OUTPUT_0, data);
|
|
}
|
|
|
|
inline
|
|
uint8_t expander_write_inversion(uint8_t exp, uint8_t *data)
|
|
{
|
|
return expander_write(exp, EXP_COMM_INVERSION_0, data);
|
|
}
|
|
|
|
inline
|
|
uint8_t expander_write_config(uint8_t exp, uint8_t *data)
|
|
{
|
|
return expander_write(exp, EXP_COMM_CONFIG_0, data);
|
|
}
|
|
inline
|
|
uint8_t expander_read_input(uint8_t exp, uint8_t *data)
|
|
{
|
|
return expander_read(exp, EXP_COMM_INPUT_0, data);
|
|
}
|
|
|
|
void init_data(uint8_t value)
|
|
{
|
|
for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
|
|
for (uint8_t port = 0; port < EXP_PORT_COUNT; port++) {
|
|
data[exp][port] = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
ISR(WDT_vect)
|
|
{
|
|
dprintf("i2c timeout\n");
|
|
|
|
/* let slave to release SDA */
|
|
TWCR = 0;
|
|
DDRD |= (1<<PD0);
|
|
DDRD &= ~(1<<PD1);
|
|
if (!(PIND & (1<<PD1))) {
|
|
for (uint8_t i = 0; i < 9; i++) {
|
|
PORTD &= ~(1<<PD0);
|
|
_delay_us(SCL_DURATION);
|
|
PORTD |= (1<<PD0);
|
|
_delay_us(SCL_DURATION);
|
|
}
|
|
}
|
|
|
|
/* send stop condition */
|
|
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
|
|
|
|
/* escape from loop */
|
|
i2c_force_stop = 1;
|
|
}
|