You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.

kimera.c 9.9KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. /*
  2. Copyright 2014 Kai Ryu <[email protected]>
  3. This program is free software: you can redistribute it and/or modify
  4. it under the terms of the GNU General Public License as published by
  5. the Free Software Foundation, either version 2 of the License, or
  6. (at your option) any later version.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License for more details.
  11. You should have received a copy of the GNU General Public License
  12. along with this program. If not, see <http://www.gnu.org/licenses/>.
  13. */
  14. #define KIMERA_C
  15. #include <stdbool.h>
  16. #include <avr/eeprom.h>
  17. #include "action.h"
  18. #include "i2cmaster.h"
  19. #include "kimera.h"
  20. #include "debug.h"
  21. static uint8_t row_mapping[PX_COUNT] = {
  22. 0, 1, 2, 3, 4, 5, 6, 7,
  23. 32, 33, 34, 35, 36, 37, 38, 39,
  24. UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED,
  25. UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED, UNCONFIGURED
  26. };
  27. static uint8_t col_mapping[PX_COUNT] = {
  28. 8, 9, 10, 11, 12, 13, 14, 15,
  29. 16, 17, 18, 19, 20, 21, 22, 23,
  30. 40, 41, 42, 43, 44, 45, 46, 47,
  31. 48, 49, 50, 51, 52, 53, 54, 55
  32. };
  33. static uint8_t row_count = 16;
  34. static uint8_t col_count = 32;
  35. static uint8_t row_left_count = 8;
  36. static uint8_t col_left_count = 16;
  37. static matrix_row_t col_left_mask;
  38. static uint8_t combining = COMBINING_NONE;
  39. static uint8_t data[EXP_COUNT][EXP_PORT_COUNT];
  40. static uint8_t exp_in_use = 0;
  41. static uint8_t exp_online = 0;
  42. static uint8_t read_matrix_mapping(void);
  43. static void write_matrix_mapping(void);
  44. static void expander_init(uint8_t exp);
  45. static uint8_t expander_write(uint8_t exp, uint8_t command, uint8_t *data);
  46. static uint8_t expander_read(uint8_t exp, uint8_t command, uint8_t *data);
  47. static uint8_t expander_write_output(uint8_t exp, uint8_t *data);
  48. static uint8_t expander_write_inversion(uint8_t exp, uint8_t *data);
  49. static uint8_t expander_write_config(uint8_t exp, uint8_t *data);
  50. static uint8_t expander_read_input(uint8_t exp, uint8_t *data);
  51. static void init_data(uint8_t value);
  52. void kimera_init(void)
  53. {
  54. /* read config */
  55. //write_matrix_mapping(); /* debug */
  56. if (read_matrix_mapping()) {
  57. write_matrix_mapping();
  58. }
  59. /* init i/o expanders */
  60. kimera_scan();
  61. }
  62. uint8_t read_matrix_mapping(void)
  63. {
  64. uint8_t error = 0;
  65. /* read number of rows and cols */
  66. uint8_t rows = eeprom_read_byte(EECONFIG_ROW_COUNT);
  67. uint8_t cols = eeprom_read_byte(EECONFIG_COL_COUNT);
  68. if (rows == 0) error++;
  69. else if (rows == UNCONFIGURED) error++;
  70. else if (rows & COMBINING_BIT) {
  71. if (combining != COMBINING_NONE) error++;
  72. combining = COMBINING_ROW;
  73. rows -= COMBINING_BIT;
  74. }
  75. if (cols == 0) error++;
  76. else if (cols == UNCONFIGURED) error++;
  77. else if (cols & COMBINING_BIT) {
  78. if (combining != COMBINING_NONE) error++;
  79. combining = COMBINING_COL;
  80. cols -= COMBINING_BIT;
  81. }
  82. if (rows + cols > PX_COUNT) error++;
  83. if (error) return error;
  84. row_count = rows;
  85. col_count = cols;
  86. if (combining != COMBINING_NONE) {
  87. row_left_count = (rows + 1) / 2;
  88. col_left_count = (cols + 1) / 2;
  89. col_left_mask = (1 << col_left_count) - 1;
  90. }
  91. /* read row mapping */
  92. uint8_t *mapping = EECONFIG_ROW_COL_MAPPING;
  93. uint8_t exp;
  94. for (uint8_t i = 0; i < PX_COUNT; i++) {
  95. if (i < row_count) {
  96. row_mapping[i] = eeprom_read_byte(mapping++);
  97. if (row_mapping[i] >= PX_COUNT) {
  98. error++;
  99. }
  100. else {
  101. exp = PX_TO_EXP(row_mapping[i]);
  102. exp_in_use |= (1<<exp);
  103. }
  104. }
  105. else {
  106. row_mapping[i] = UNCONFIGURED;
  107. }
  108. }
  109. /* read col mapping*/
  110. for (uint8_t i = 0; i < PX_COUNT; i++) {
  111. if (i < col_count) {
  112. col_mapping[i] = eeprom_read_byte(mapping++);
  113. if (col_mapping[i] >= PX_COUNT) {
  114. error++;
  115. }
  116. else {
  117. exp = PX_TO_EXP(col_mapping[i]);
  118. exp_in_use |= (1<<exp);
  119. }
  120. }
  121. else {
  122. col_mapping[i] = UNCONFIGURED;
  123. }
  124. }
  125. return error;
  126. }
  127. void write_matrix_mapping(void)
  128. {
  129. /* write number of rows and cols */
  130. eeprom_write_byte(EECONFIG_ROW_COUNT, row_count);
  131. eeprom_write_byte(EECONFIG_COL_COUNT, col_count);
  132. /* write row mapping */
  133. uint8_t *mapping = EECONFIG_ROW_COL_MAPPING;
  134. for (uint8_t row = 0; row < row_count; row++) {
  135. eeprom_write_byte(mapping++, row_mapping[row]);
  136. }
  137. /* write col mapping */
  138. for (uint8_t col = 0; col < col_count; col++) {
  139. eeprom_write_byte(mapping++, col_mapping[col]);
  140. }
  141. }
  142. void kimera_scan(void)
  143. {
  144. uint8_t ret;
  145. dprintf("exp in use: %d\n", exp_in_use);
  146. dprintf("exp online: %d\n", exp_online);
  147. for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
  148. if (exp_in_use & (1<<exp)) {
  149. ret = i2c_start(EXP_ADDR(exp) | I2C_WRITE);
  150. if (ret == 0) {
  151. i2c_stop();
  152. if ((exp_online & (1<<exp)) == 0) {
  153. xprintf("found: %d\n", exp);
  154. exp_online |= (1<<exp);
  155. expander_init(exp);
  156. clear_keyboard();
  157. }
  158. }
  159. else {
  160. if ((exp_online & (1<<exp)) != 0) {
  161. xprintf("lost: %d\n", exp);
  162. exp_online &= ~(1<<exp);
  163. clear_keyboard();
  164. }
  165. }
  166. }
  167. }
  168. }
  169. inline
  170. uint8_t kimera_matrix_rows(void)
  171. {
  172. if (combining == COMBINING_ROW) {
  173. return row_left_count;
  174. }
  175. else {
  176. return row_count;
  177. }
  178. }
  179. inline
  180. uint8_t kimera_matrix_cols(void)
  181. {
  182. if (combining == COMBINING_COL) {
  183. return col_left_count;
  184. }
  185. else {
  186. return col_count;
  187. }
  188. }
  189. void kimera_read_cols(void)
  190. {
  191. /* read all input registers */
  192. init_data(0xFF);
  193. for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
  194. expander_read_input(exp, data[exp]);
  195. }
  196. }
  197. uint8_t kimera_get_col(uint8_t row, uint8_t col)
  198. {
  199. if (combining == COMBINING_ROW) {
  200. if (row >= row_left_count) {
  201. col += col_left_count;
  202. }
  203. }
  204. uint8_t px = col_mapping[col];
  205. if (px != UNCONFIGURED) {
  206. if (!(data[PX_TO_EXP(px)][PX_TO_PORT(px)] & (1 << PX_TO_PIN(px)))) {
  207. return 1;
  208. }
  209. }
  210. return 0;
  211. }
  212. matrix_row_t kimera_read_row(uint8_t row)
  213. {
  214. kimera_read_cols();
  215. /* make cols */
  216. matrix_row_t cols = 0;
  217. for (uint8_t col = 0; col < col_count; col++) {
  218. uint8_t px = col_mapping[col];
  219. if (px != UNCONFIGURED) {
  220. if (!(data[PX_TO_EXP(px)][PX_TO_PORT(px)] & (1 << PX_TO_PIN(px)))) {
  221. cols |= (1UL << col);
  222. }
  223. }
  224. }
  225. if (combining == COMBINING_COL) {
  226. if (row < row_left_count) {
  227. cols &= col_left_mask;
  228. }
  229. else {
  230. cols >>= col_left_count;
  231. }
  232. }
  233. return cols;
  234. }
  235. void kimera_unselect_rows(void)
  236. {
  237. /* set all output registers to 0xFF */
  238. init_data(0xFF);
  239. for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
  240. expander_write_config(exp, data[exp]);
  241. }
  242. }
  243. void kimera_select_row(uint8_t row)
  244. {
  245. /* set selected row to low */
  246. init_data(0xFF);
  247. uint8_t px = row_mapping[row];
  248. if (px != UNCONFIGURED) {
  249. uint8_t exp = PX_TO_EXP(px);
  250. data[exp][PX_TO_PORT(px)] &= ~(1 << PX_TO_PIN(px));
  251. expander_write_config(exp, data[exp]);
  252. }
  253. if (combining == COMBINING_ROW) {
  254. if (row < row_left_count) {
  255. kimera_select_row(row + row_left_count);
  256. }
  257. }
  258. }
  259. void expander_init(uint8_t exp)
  260. {
  261. init_data(0x00);
  262. /* write inversion register */
  263. /*
  264. for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
  265. expander_write_inversion(exp, data[exp]);
  266. }
  267. */
  268. /* set output bit */
  269. /*
  270. for (uint8_t row = 0; row < row_count; row++) {
  271. uint8_t px = row_mapping[row];
  272. if (px != UNCONFIGURED) {
  273. data[PX_TO_EXP(px)][PX_TO_PORT(px)] &= ~(1 << PX_TO_PIN(px));
  274. }
  275. }
  276. */
  277. /* write config registers */
  278. //expander_write_config(exp, data[exp]);
  279. /* write output registers */
  280. expander_write_output(exp, data[exp]);
  281. }
  282. uint8_t expander_write(uint8_t exp, uint8_t command, uint8_t *data)
  283. {
  284. if ((exp_online & (1<<exp)) == 0) {
  285. return 0;
  286. }
  287. uint8_t addr = EXP_ADDR(exp);
  288. uint8_t ret;
  289. ret = i2c_start(addr | I2C_WRITE);
  290. if (ret) goto stop;
  291. ret = i2c_write(command);
  292. if (ret) goto stop;
  293. ret = i2c_write(*data++);
  294. if (ret) goto stop;
  295. ret = i2c_write(*data);
  296. stop:
  297. i2c_stop();
  298. return ret;
  299. }
  300. uint8_t expander_read(uint8_t exp, uint8_t command, uint8_t *data)
  301. {
  302. if ((exp_online & (1<<exp)) == 0) {
  303. return 0;
  304. }
  305. uint8_t addr = EXP_ADDR(exp);
  306. uint8_t ret;
  307. ret = i2c_start(addr | I2C_WRITE);
  308. if (ret) goto stop;
  309. ret = i2c_write(command);
  310. if (ret) goto stop;
  311. ret = i2c_rep_start(addr | I2C_READ);
  312. if (ret) goto stop;
  313. *data++ = i2c_readAck();
  314. *data = i2c_readNak();
  315. stop:
  316. i2c_stop();
  317. return ret;
  318. }
  319. inline
  320. uint8_t expander_write_output(uint8_t exp, uint8_t *data)
  321. {
  322. return expander_write(exp, EXP_COMM_OUTPUT_0, data);
  323. }
  324. inline
  325. uint8_t expander_write_inversion(uint8_t exp, uint8_t *data)
  326. {
  327. return expander_write(exp, EXP_COMM_INVERSION_0, data);
  328. }
  329. inline
  330. uint8_t expander_write_config(uint8_t exp, uint8_t *data)
  331. {
  332. return expander_write(exp, EXP_COMM_CONFIG_0, data);
  333. }
  334. inline
  335. uint8_t expander_read_input(uint8_t exp, uint8_t *data)
  336. {
  337. return expander_read(exp, EXP_COMM_INPUT_0, data);
  338. }
  339. void init_data(uint8_t value)
  340. {
  341. for (uint8_t exp = 0; exp < EXP_COUNT; exp++) {
  342. for (uint8_t port = 0; port < EXP_PORT_COUNT; port++) {
  343. data[exp][port] = value;
  344. }
  345. }
  346. }