1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
tmk_keyboard_custom/keyboard/kimera/rgb.c
2016-12-14 21:14:01 +09:00

251 lines
6.1 KiB
C

/*
Copyright 2016 Kai Ryu <kai1103@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include "softpwm_led.h"
#include "backlight.h"
#include "rgb.h"
#include "light_ws2812.h"
#include "debug.h"
#ifdef RGB_LED_ENABLE
volatile static uint8_t rgb_fading_enable = 0;
static rgb_config_t rgb_config;
static struct cRGB rgb_color[RGB_LED_COUNT];
static uint16_t rgb_hue = 0;
static uint8_t rgb_saturation = 255;
static uint8_t rgb_brightness = 16;
static uint8_t rgb_rainbow = 0;
extern backlight_config_t backlight_config;
extern uint8_t backlight_brightness;
static void rgb_write_config(void);
static void rgb_read_config(void);
static void rgb_set_level(uint8_t level);
static void rgb_refresh(void);
#if 0
static void hue_to_rgb(uint16_t hue, struct cRGB *rgb);
#endif
static void hsb_to_rgb(uint16_t hue, uint8_t saturation, uint8_t brightness, struct cRGB *rgb);
void rgb_init(void)
{
rgb_read_config();
if (rgb_config.raw == RGB_UNCONFIGURED) {
rgb_config.enable = 0;
rgb_config.level = RGB_OFF;
rgb_write_config();
}
if (rgb_config.enable) {
rgb_set_level(rgb_config.level);
}
}
void rgb_read_config(void)
{
rgb_config.raw = eeprom_read_byte(EECONFIG_RGB);
}
void rgb_write_config(void)
{
eeprom_update_byte(EECONFIG_RGB, rgb_config.raw);
}
void rgb_toggle(void)
{
if (rgb_config.enable) {
rgb_off();
}
else {
rgb_on();
}
}
void rgb_on(void)
{
rgb_config.enable = 1;
rgb_set_level(rgb_config.level);
rgb_write_config();
}
void rgb_off(void)
{
rgb_config.enable = 0;
rgb_set_level(RGB_OFF);
rgb_write_config();
}
void rgb_decrease(void)
{
if(rgb_config.level > 0) {
rgb_config.level--;
rgb_config.enable = (rgb_config.level != 0);
rgb_write_config();
}
rgb_set_level(rgb_config.level);
}
void rgb_increase(void)
{
if(rgb_config.level < RGB_LEVELS) {
rgb_config.level++;
rgb_config.enable = 1;
rgb_write_config();
}
rgb_set_level(rgb_config.level);
}
void rgb_step(void)
{
rgb_config.level++;
if(rgb_config.level > RGB_LEVELS)
{
rgb_config.level = 0;
}
rgb_config.enable = (rgb_config.level != 0);
rgb_write_config();
rgb_set_level(rgb_config.level);
}
void rgb_set_level(uint8_t level)
{
dprintf("RGB Level: %d\n", level);
if (level == RGB_OFF) {
rgb_brightness = 0;
}
else if (backlight_config.enable) {
if (backlight_config.level >= 1 && backlight_config.level <= 3) {
rgb_brightness = backlight_brightness;
}
}
else {
rgb_brightness = 16;
}
if (level <= RGB_WHITE) {
rgb_fading_enable = 0;
rgb_rainbow = 0;
if (level != RGB_OFF) {
if (level == RGB_WHITE) {
rgb_saturation = 0;
}
else {
rgb_hue = (level - 1) * 128;
rgb_saturation = 255;
}
if (backlight_config.enable) {
if (backlight_config.level >= 1 && backlight_config.level <= 3) {
rgb_brightness = backlight_brightness;
}
}
else {
rgb_brightness = 16;
}
}
rgb_refresh();
}
else {
rgb_saturation = 255;
rgb_fading_enable = 1;
rgb_rainbow = (level >= RGB_RAINBOW) ? 1 : 0;
}
}
void rgb_set_brightness(uint8_t brightness)
{
if (rgb_config.enable) {
rgb_brightness = brightness;
rgb_refresh();
}
}
void rgb_refresh(void)
{
struct cRGB rgb;
uint16_t hue;
uint8_t i;
if (rgb_rainbow) {
for (i = 0; i < RGB_LED_COUNT; i++) {
hue = rgb_hue + (768 / RGB_LED_COUNT) * i;
hsb_to_rgb(hue, rgb_saturation, rgb_brightness, &rgb);
rgb_color[i] = rgb;
}
}
else {
hsb_to_rgb(rgb_hue, rgb_saturation, rgb_brightness, &rgb);
for (i = 0; i < RGB_LED_COUNT; i++) {
rgb_color[i] = rgb;
}
}
/* xprintf("R%d G%d B%d\n", rgb_color[0].r, rgb_color[0].g, rgb_color[0].b); */
ws2812_setleds(rgb_color, RGB_LED_COUNT);
}
#if 0
void hue_to_rgb(uint16_t hue, struct cRGB *rgb)
{
uint8_t hi = hue / 60;
uint16_t f = (hue % 60) * 425 / 100;
uint8_t q = 255 - f;
switch (hi) {
case 0: rgb->r = 255; rgb->g = f; rgb->b = 0; break;
case 1: rgb->r = q; rgb->g = 255; rgb->b = 0; break;
case 2: rgb->r = 0; rgb->g = 255; rgb->b = f; break;
case 3: rgb->r = 0; rgb->g = q; rgb->b = 255; break;
case 4: rgb->r = f; rgb->g = 0; rgb->b = 255; break;
case 5: rgb->r = 255; rgb->g = 0; rgb->b = q; break;
}
}
#endif
/*
* original code: https://blog.adafruit.com/2012/03/14/constant-brightness-hsb-to-rgb-algorithm/
*/
void hsb_to_rgb(uint16_t hue, uint8_t saturation, uint8_t brightness, struct cRGB *rgb)
{
uint8_t temp[5];
uint8_t n = (hue >> 8) % 3;
uint8_t x = ((((hue & 255) * saturation) >> 8) * brightness) >> 8;
uint8_t s = ((256 - saturation) * brightness) >> 8;
temp[0] = temp[3] = s;
temp[1] = temp[4] = x + s;
temp[2] = brightness - x;
rgb->r = temp[n + 2];
rgb->g = temp[n + 1];
rgb->b = temp[n];
}
void rgb_fading(void)
{
static uint8_t step = 0;
static uint16_t hue = 0;
if (rgb_fading_enable) {
if (++step > rgb_fading_enable) {
step = 0;
rgb_hue = hue;
rgb_refresh();
if (++hue >= 768) {
hue = 0;
}
}
}
}
#endif