Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
Repozitorijs ir arhivēts. Tam var aplūkot failus un to var klonēt, bet nevar iesūtīt jaunas izmaiņas, kā arī atvērt jaunas problēmas/izmaiņu pieprasījumus.

softpwm_led.c 7.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. #include <avr/io.h>
  2. #include <avr/interrupt.h>
  3. #include "led.h"
  4. #include "softpwm_led.h"
  5. #include "debug.h"
  6. #define SOFTPWM_LED_FREQ 64
  7. #define SOFTPWM_LED_TIMER_TOP F_CPU / (256 * SOFTPWM_LED_FREQ)
  8. static uint8_t softpwm_led_state = 0;
  9. static uint8_t softpwm_led_ocr[LED_COUNT] = {0};
  10. static uint8_t softpwm_led_ocr_buff[LED_COUNT] = {0};
  11. void softpwm_init(void)
  12. {
  13. #ifdef SOFTPWM_LED_TIMER3
  14. /* Timer3 setup */
  15. /* CTC mode */
  16. TCCR3B |= (1<<WGM32);
  17. /* Clock selelct: clk/8 */
  18. TCCR3B |= (1<<CS30);
  19. /* Set TOP value */
  20. uint8_t sreg = SREG;
  21. cli();
  22. OCR3AH = (SOFTPWM_LED_TIMER_TOP >> 8) & 0xff;
  23. OCR3AL = SOFTPWM_LED_TIMER_TOP & 0xff;
  24. SREG = sreg;
  25. #else
  26. /* Timer1 setup */
  27. /* CTC mode */
  28. TCCR1B |= (1<<WGM12);
  29. /* Clock selelct: clk/8 */
  30. TCCR1B |= (1<<CS10);
  31. /* Set TOP value */
  32. uint8_t sreg = SREG;
  33. cli();
  34. OCR1AH = (SOFTPWM_LED_TIMER_TOP >> 8) & 0xff;
  35. OCR1AL = SOFTPWM_LED_TIMER_TOP & 0xff;
  36. SREG = sreg;
  37. #endif
  38. softpwm_led_init();
  39. }
  40. void softpwm_led_enable(void)
  41. {
  42. /* Enable Compare Match Interrupt */
  43. #ifdef SOFTPWM_LED_TIMER3
  44. TIMSK3 |= (1<<OCIE3A);
  45. //dprintf("softpwm led on: %u\n", TIMSK3 & (1<<OCIE3A));
  46. #else
  47. TIMSK1 |= (1<<OCIE1A);
  48. //dprintf("softpwm led on: %u\n", TIMSK1 & (1<<OCIE1A));
  49. #endif
  50. softpwm_led_state = 1;
  51. #ifdef LEDMAP_ENABLE
  52. softpwm_led_state_change(softpwm_led_state);
  53. #endif
  54. }
  55. void softpwm_led_disable(void)
  56. {
  57. /* Disable Compare Match Interrupt */
  58. #ifdef SOFTPWM_LED_TIMER3
  59. TIMSK3 &= ~(1<<OCIE3A);
  60. //dprintf("softpwm led off: %u\n", TIMSK3 & (1<<OCIE3A));
  61. #else
  62. TIMSK1 &= ~(1<<OCIE1A);
  63. //dprintf("softpwm led off: %u\n", TIMSK1 & (1<<OCIE1A));
  64. #endif
  65. softpwm_led_state = 0;
  66. for (uint8_t i = 0; i < LED_COUNT; i++) {
  67. softpwm_led_off(i);
  68. }
  69. #ifdef LEDMAP_ENABLE
  70. softpwm_led_state_change(softpwm_led_state);
  71. #endif
  72. }
  73. void softpwm_led_toggle(void)
  74. {
  75. if (softpwm_led_state) {
  76. softpwm_led_disable();
  77. }
  78. else {
  79. softpwm_led_enable();
  80. }
  81. }
  82. void softpwm_led_set(uint8_t index, uint8_t val)
  83. {
  84. softpwm_led_ocr_buff[index] = val;
  85. }
  86. void softpwm_led_set_all(uint8_t val)
  87. {
  88. for (uint8_t i = 0; i < LED_COUNT; i++) {
  89. softpwm_led_ocr_buff[i] = val;
  90. }
  91. }
  92. inline uint8_t softpwm_led_get_state(void)
  93. {
  94. return softpwm_led_state;
  95. }
  96. #ifdef BREATHING_LED_ENABLE
  97. /* Breathing LED brighness(PWM On period) table
  98. *
  99. * http://www.wolframalpha.com/input/?i=Table%5Bfloor%28%28exp%28sin%28x%2F256*2*pi%2B3%2F2*pi%29%29-1%2Fe%29*%28256%2F%28e-1%2Fe%29%29%29%2C+%7Bx%2C0%2C255%2C1%7D%5D
  100. * Table[floor((exp(sin(x/256*2*pi+3/2*pi))-1/e)*(256/(e-1/e))), {x,0,255,1}]
  101. * (0..255).each {|x| print ((exp(sin(x/256.0*2*PI+3.0/2*PI))-1/E)*(256/(E-1/E))).to_i, ', ' }
  102. */
  103. static const uint8_t breathing_table[128] PROGMEM = {
  104. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 32, 34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 56, 58, 61, 63, 66, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 102, 105, 108, 112, 116, 119, 123, 126, 130, 134, 138, 142, 145, 149, 153, 157, 161, 165, 169, 173, 176, 180, 184, 188, 192, 195, 199, 203, 206, 210, 213, 216, 219, 223, 226, 228, 231, 234, 236, 239, 241, 243, 245, 247, 248, 250, 251, 252, 253, 254, 255, 255, 255
  105. };
  106. static led_pack_t breathing_led_state = 0;
  107. static led_pack_t breathing_led_direction = 0;
  108. static led_pack_t breathing_led_rebound_low = 0;
  109. static led_pack_t breathing_led_rebound_high = 0;
  110. static uint8_t breathing_led_index[LED_COUNT] = {0};
  111. static uint8_t breathing_led_duration[LED_COUNT] = {0};
  112. void breathing_led_enable(uint8_t index)
  113. {
  114. LED_BIT_SET(breathing_led_state, index);
  115. }
  116. void breathing_led_enable_all(void)
  117. {
  118. for (uint8_t i = 0; i < LED_COUNT; i++) {
  119. LED_BIT_SET(breathing_led_state, i);
  120. }
  121. }
  122. void breathing_led_disable(uint8_t index)
  123. {
  124. LED_BIT_CLEAR(breathing_led_state, index);
  125. }
  126. void breathing_led_disable_all(void)
  127. {
  128. breathing_led_state = 0;
  129. }
  130. void breathing_led_toggle(uint8_t index)
  131. {
  132. LED_BIT_XOR(breathing_led_state, index);
  133. }
  134. void breathing_led_toggle_all(void)
  135. {
  136. for (uint8_t i = 0; i < LED_COUNT; i++) {
  137. LED_BIT_XOR(breathing_led_state, i);
  138. }
  139. }
  140. void breathing_led_increase(uint8_t index, uint8_t offset)
  141. {
  142. if (breathing_led_index[index] + offset > 0x7F) {
  143. breathing_led_index[index] = 0x7F;
  144. if (breathing_led_rebound_high & LED_BIT(index)) {
  145. LED_BIT_SET(breathing_led_direction, index);
  146. }
  147. }
  148. else {
  149. breathing_led_index[index] += offset;
  150. }
  151. }
  152. void breathing_led_decrease(uint8_t index, uint8_t offset)
  153. {
  154. if (breathing_led_index[index] < offset) {
  155. breathing_led_index[index] = 0;
  156. if (breathing_led_rebound_low & LED_BIT(index)) {
  157. LED_BIT_CLEAR(breathing_led_direction, index);
  158. }
  159. }
  160. else {
  161. breathing_led_index[index] -= offset;
  162. }
  163. }
  164. void breathing_led_set_mode(uint8_t index, uint8_t mode)
  165. {
  166. switch (mode) {
  167. case BREATHING_LED_UP:
  168. breathing_led_index[index] = 0;
  169. LED_BIT_CLEAR(breathing_led_direction, index);
  170. LED_BIT_CLEAR(breathing_led_rebound_low, index);
  171. LED_BIT_CLEAR(breathing_led_rebound_high, index);
  172. break;
  173. case BREATHING_LED_DOWN:
  174. breathing_led_index[index] = 0x7F;
  175. LED_BIT_SET(breathing_led_direction, index);
  176. LED_BIT_CLEAR(breathing_led_rebound_low, index);
  177. LED_BIT_CLEAR(breathing_led_rebound_high, index);
  178. break;
  179. case BREATHING_LED_CYCLE:
  180. breathing_led_index[index] = 0;
  181. LED_BIT_CLEAR(breathing_led_direction, index);
  182. LED_BIT_SET(breathing_led_rebound_low, index);
  183. LED_BIT_SET(breathing_led_rebound_high, index);
  184. }
  185. }
  186. void breathing_led_set_duration(uint8_t index, uint8_t dur)
  187. {
  188. breathing_led_duration[index] = dur;
  189. //dprintf("breathing led set duration: %u\n", breathing_led_duration);
  190. }
  191. void breathing_led_increase_all(uint8_t offset)
  192. {
  193. for (uint8_t i = 0; i < LED_COUNT; i++) {
  194. breathing_led_increase(i, offset);
  195. }
  196. }
  197. void breathing_led_decrease_all(uint8_t offset)
  198. {
  199. for (uint8_t i = 0; i < LED_COUNT; i++) {
  200. breathing_led_decrease(i, offset);
  201. }
  202. }
  203. void breathing_led_set_mode_all(uint8_t mode)
  204. {
  205. for (uint8_t i = 0; i < LED_COUNT; i++) {
  206. breathing_led_set_mode(i, mode);
  207. }
  208. }
  209. void breathing_led_set_duration_all(uint8_t dur)
  210. {
  211. for (uint8_t i = 0; i < LED_COUNT; i++) {
  212. breathing_led_duration[i] = dur;
  213. }
  214. }
  215. #endif
  216. #ifdef SOFTPWM_LED_TIMER3
  217. ISR(TIMER3_COMPA_vect)
  218. #else
  219. ISR(TIMER1_COMPA_vect)
  220. #endif
  221. {
  222. static uint8_t pwm = 0;
  223. pwm++;
  224. // LED on
  225. if (pwm == 0) {
  226. for (uint8_t i = 0; i < LED_COUNT; i++) {
  227. softpwm_led_on(i);
  228. softpwm_led_ocr[i] = softpwm_led_ocr_buff[i];
  229. }
  230. }
  231. // LED off
  232. for (uint8_t i = 0; i < LED_COUNT; i++) {
  233. if (pwm == softpwm_led_ocr[i]) {
  234. softpwm_led_off(i);
  235. }
  236. }
  237. #ifdef BREATHING_LED_ENABLE
  238. static uint8_t count = 0;
  239. static uint8_t step[LED_COUNT] = {0};
  240. if (breathing_led_state) {
  241. if (++count > SOFTPWM_LED_FREQ) {
  242. count = 0;
  243. for (uint8_t i = 0; i < LED_COUNT; i++) {
  244. if (breathing_led_state & LED_BIT(i)) {
  245. if (++step[i] > breathing_led_duration[i]) {
  246. step[i] = 0;
  247. softpwm_led_ocr_buff[i] = pgm_read_byte(&breathing_table[breathing_led_index[i]]);
  248. if (breathing_led_direction & LED_BIT(i)) {
  249. breathing_led_decrease(i, 1);
  250. }
  251. else {
  252. breathing_led_increase(i, 1);
  253. }
  254. }
  255. }
  256. }
  257. }
  258. }
  259. #endif
  260. }