Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/MD2/scan_loop.c

683 lines
16 KiB
C
Raw Permalink Normal View History

2014-12-01 03:38:03 +00:00
/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
#include <matrix_scan.h>
// Local Includes
#include "scan_loop.h"
#include "macro.h"
typedef struct I2C_Buffer {
2014-12-06 08:35:39 +00:00
uint16_t head;
uint16_t tail;
uint8_t sequencePos;
uint16_t size;
uint8_t *buffer;
2014-12-01 03:38:03 +00:00
} I2C_Buffer;
// ----- Function Declarations -----
// CLI Functions
void cliFunc_echo( char* args );
void cliFunc_i2cRecv( char* args );
void cliFunc_i2cSend( char* args );
void cliFunc_ledZero( char* args );
uint8_t I2C_TxBufferPop();
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
uint16_t I2C_BufferLen( I2C_Buffer *buffer );
2014-12-06 08:35:39 +00:00
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen );
2014-12-01 03:38:03 +00:00
// ----- Variables -----
// Scan Module command dictionary
CLIDict_Entry( echo, "Example command, echos the arguments." );
2014-12-06 08:35:39 +00:00
CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence. Use |'s to split sequences with a stop." );
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
2014-12-01 03:38:03 +00:00
CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );
CLIDict_Def( scanCLIDict, "Scan Module Commands" ) = {
CLIDict_Item( echo ),
CLIDict_Item( i2cRecv ),
CLIDict_Item( i2cSend ),
CLIDict_Item( ledZero ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// Number of scans since the last USB send
uint16_t Scan_scanCount = 0;
// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
#define I2C_TxBufferLength 300
#define I2C_RxBufferLength 8
volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
2014-12-06 08:35:39 +00:00
volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr };
volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr };
2014-12-01 03:38:03 +00:00
void I2C_setup()
{
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
// External pull-up resistor
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
// SCL Frequency Divider
// 400kHz -> 120 (0x85) @ 48 MHz F_BUS
I2C0_F = 0x85;
I2C0_FLT = 4;
I2C0_C1 = I2C_C1_IICEN;
I2C0_C2 = I2C_C2_HDRS; // High drive select
// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C0 );
}
// ----- Interrupt Functions -----
void i2c0_isr()
{
cli(); // Disable Interrupts
uint8_t status = I2C0_S; // Read I2C Bus status
// Master Mode Transmit
if ( I2C0_C1 & I2C_C1_TX )
{
// Check current use of the I2C bus
// Currently sending data
if ( I2C_TxBuffer.sequencePos > 0 )
{
// Make sure slave sent an ACK
if ( status & I2C_S_RXAK )
{
// NACK Detected, disable interrupt
erro_print("I2C NAK detected...");
I2C0_C1 = I2C_C1_IICEN;
// Abort Tx Buffer
I2C_TxBuffer.head = 0;
I2C_TxBuffer.tail = 0;
I2C_TxBuffer.sequencePos = 0;
}
else
{
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
// Receiving data
else if ( I2C_RxBuffer.sequencePos > 0 )
{
// Master Receive, addr sent
if ( status & I2C_S_ARBL )
{
// Arbitration Lost
erro_print("Arbitration lost...");
// TODO Abort Rx
I2C0_C1 = I2C_C1_IICEN;
I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
}
if ( status & I2C_S_RXAK )
{
// Slave Address NACK Detected, disable interrupt
erro_print("Slave Address I2C NAK detected...");
// TODO Abort Rx
I2C0_C1 = I2C_C1_IICEN;
}
else
{
2014-12-06 08:35:39 +00:00
dbug_print("Attempting to read byte");
2014-12-01 03:38:03 +00:00
I2C0_C1 = I2C_RxBuffer.sequencePos == 1
? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
: I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
}
}
else
{
2014-12-06 08:35:39 +00:00
/*
2014-12-01 03:38:03 +00:00
dbug_msg("STOP - ");
printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
print(NL);
2014-12-06 08:35:39 +00:00
*/
// Delay around STOP to make sure it actually happens...
delayMicroseconds( 1 );
I2C0_C1 = I2C_C1_IICEN; // Send STOP
delayMicroseconds( 7 );
2014-12-01 03:38:03 +00:00
// If there is another sequence, start sending
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
{
2014-12-06 08:35:39 +00:00
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );
2014-12-01 03:38:03 +00:00
// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
}
// Master Mode Receive
else
{
// XXX Do we need to handle 2nd last byte?
//I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
// Last byte
if ( I2C_TxBuffer.sequencePos <= 1 )
{
// Change to Tx mode
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
// Grab last byte
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
delayMicroseconds( 1 ); // Should be enough time before issuing the stop
I2C0_C1 = I2C_C1_IICEN; // Send STOP
}
else
{
// Retrieve data
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
}
}
I2C0_S = I2C_S_IICIF; // Clear interrupt
sei(); // Re-enable Interrupts
}
// ----- Functions -----
2014-12-06 08:35:39 +00:00
void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t pageLen )
{
// Page Setup
uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };
// Max length of a page + chip id + reg start
uint8_t fullPage[ 0xB3 + 2 ] = { 0 };
fullPage[0] = 0xE8; // Set chip id, starting reg is already 0x00
// Iterate through given pages, zero'ing out the given register regions
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
{
// Set page
pageSetup[2] = page;
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Zero out page
while ( I2C_Send( fullPage, pageLen + 2, 0 ) == 0 )
delay(1);
}
}
2014-12-01 03:38:03 +00:00
// Setup
inline void LED_setup()
{
I2C_setup();
2014-12-06 08:35:39 +00:00
// Zero out Frame Registers
LED_zeroPages( 0x00, 8, 0xB3 ); // LED Registers
LED_zeroPages( 0x0B, 1, 0x0C ); // Control Registers
// Disable Hardware shutdown of ISSI chip (pull high)
GPIOD_PDDR |= (1<<1);
PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOD_PSOR |= (1<<1);
2014-12-01 03:38:03 +00:00
}
inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
{
uint8_t reTurn = 0;
// If sendLen is greater than buffer fail right away
if ( sendLen > buffer->size )
return 0;
// Calculate new tail to determine if buffer has enough space
// The first element specifies the expected number of bytes from the slave (+1)
// The second element in the new buffer is the length of the buffer sequence (+1)
uint16_t newTail = buffer->tail + sendLen + 2;
if ( newTail >= buffer->size )
newTail -= buffer->size;
if ( I2C_BufferLen( buffer ) < sendLen + 2 )
return 0;
/*
print("|");
printHex( sendLen + 2 );
print("|");
printHex( *tail );
print("@");
printHex( newTail );
print("@");
*/
// If buffer is clean, return 1, otherwise 2
reTurn = buffer->head == buffer->tail ? 1 : 2;
// Add to buffer, already know there is enough room (simplifies adding logic)
uint8_t bufferHeaderPos = 0;
for ( uint16_t c = 0; c < sendLen; c++ )
{
// Add data to buffer
switch ( bufferHeaderPos )
{
case 0:
buffer->buffer[ buffer->tail ] = recvLen;
bufferHeaderPos++;
c--;
break;
case 1:
buffer->buffer[ buffer->tail ] = sendLen;
bufferHeaderPos++;
c--;
break;
default:
buffer->buffer[ buffer->tail ] = data[ c ];
break;
}
// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
}
return reTurn;
}
inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
{
// Tail >= Head
if ( buffer->tail >= buffer->head )
return buffer->head + buffer->size - buffer->tail;
// Head > Tail
return buffer->head - buffer->tail;
}
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
{
// Make sure buffer isn't full
if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
{
warn_msg("I2C_BufferPush failed, buffer full: ");
printHex( byte );
print( NL );
return;
}
// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
// Add byte to buffer
buffer->buffer[ buffer->tail ] = byte;
}
uint8_t I2C_TxBufferPop()
{
// Return 0xFF if no buffer left (do not rely on this)
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
{
erro_msg("No buffer to pop an entry from... ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
return 0xFF;
}
// If there is currently no sequence being sent, the first entry in the RingBuffer is the length
if ( I2C_TxBuffer.sequencePos == 0 )
{
I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
}
uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
// Prune head
I2C_TxBuffer.head++;
// Wrap-around case
if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
I2C_TxBuffer.head = 0;
// Decrement buffer sequence (until next stop will be sent)
I2C_TxBuffer.sequencePos--;
2014-12-06 08:35:39 +00:00
/*
2014-12-01 03:38:03 +00:00
dbug_msg("Popping: ");
printHex( data );
print(" ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
2014-12-06 08:35:39 +00:00
*/
2014-12-01 03:38:03 +00:00
return data;
}
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
{
// Check head and tail pointers
// If full, return 0
// If empty, start up I2C Master Tx
// If buffer is non-empty and non-full, just append to the buffer
switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
{
// Not enough buffer space...
case 0:
/*
erro_msg("Not enough Tx buffer space... ");
printHex( I2C_TxBuffer.head );
print(":");
printHex( I2C_TxBuffer.tail );
print("+");
printHex( sendLen );
print("|");
printHex( I2C_TxBuffer.size );
print( NL );
*/
return 0;
// Empty buffer, initialize I2C
case 1:
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
// Check to see if we already have control of the bus
if ( I2C0_C1 & I2C_C1_MST )
{
// Already the master (ah yeah), send a repeated start
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
}
// Otherwise, seize control
else
{
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );
// Now we're the master (ah yisss), get ready to send stuffs
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
}
// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
// Depending on what type of transfer, the first byte is configured for R or W
I2C0_D = I2C_TxBufferPop();
2014-12-06 08:35:39 +00:00
2014-12-01 03:38:03 +00:00
return 1;
}
// Dirty buffer, I2C already initialized
return 2;
}
// LED State processing loop
inline uint8_t LED_loop()
{
// I2C Busy
// S & I2C_S_BUSY
//I2C_S_BUSY
}
// Setup
inline void Scan_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
// Setup GPIO pins for matrix scanning
//Matrix_setup();
// Reset scan count
Scan_scanCount = 0;
// Setup LED Drivers
LED_setup();
}
// Main Detection Loop
inline uint8_t Scan_loop()
{
//Matrix_scan( Scan_scanCount++ );
//LED_scan();
return 0;
}
// Signal from Macro Module that all keys have been processed (that it knows about)
inline void Scan_finishedWithMacro( uint8_t sentKeys )
{
}
// Signal from Output Module that all keys have been processed (that it knows about)
inline void Scan_finishedWithOutput( uint8_t sentKeys )
{
// Reset scan loop indicator (resets each key debounce state)
// TODO should this occur after USB send or Macro processing?
Scan_scanCount = 0;
}
// ----- CLI Command Functions -----
// XXX Just an example command showing how to parse arguments (more complex than generally needed)
void cliFunc_echo( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Parse args until a \0 is found
while ( 1 )
{
print( NL ); // No \r\n by default after the command is entered
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Print out the arg
dPrint( arg1Ptr );
}
}
void cliFunc_i2cSend( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
2014-12-06 08:35:39 +00:00
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
I2C_Send( buffer, bufferLen, 0 );
bufferLen = 0;
continue;
}
2014-12-01 03:38:03 +00:00
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
I2C_Send( buffer, bufferLen, 0 );
}
void cliFunc_i2cRecv( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
2014-12-06 08:35:39 +00:00
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
I2C_Send( buffer, bufferLen, 0 );
bufferLen = 0;
continue;
}
2014-12-01 03:38:03 +00:00
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
}
void cliFunc_ledZero( char* args )
{
print( NL ); // No \r\n by default after the command is entered
LED_zeroPages( 0x00, 8, 0xB3 );
}