Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/ADCTest/scan_loop.c

376 lines
9.7 KiB
C
Raw Normal View History

/* Copyright (C) 2014 by Jacob Alexander
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
// Local Includes
#include "scan_loop.h"
// ----- Defines -----
// ADC Clock divisor settings (F_BUS == 48000000)
#define ADC_CFG1_6MHZ ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1)
#define ADC_CFG1_12MHZ ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1)
#define ADC_CFG1_24MHZ ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1)
// ----- Macros -----
// ----- Function Declarations -----
void cliFunc_adc ( char* args );
void cliFunc_adcInit( char* args );
void cliFunc_dac ( char* args );
void cliFunc_dacVref( char* args );
void cliFunc_echo ( char* args );
// ----- Variables -----
// Buffer used to inform the macro processing module which keys have been detected as pressed
volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
volatile uint8_t KeyIndex_BufferUsed;
// Scan Module command dictionary
char scanCLIDictName[] = "ADC Test Module Commands";
const CLIDictItem scanCLIDict[] = {
2014-04-15 06:59:41 +00:00
#if defined(_mk20dx128_) || defined(_mk20dx256_) // ARM
{ "adc", "Read the specified number of values from the ADC at the given pin: <pin> [# of reads]"
NL "\t\t See \033[35mLib/pin_map.teensy3\033[0m for ADC0 channel number.", cliFunc_adc },
{ "adcInit", "Intialize/calibrate ADC: <ADC Resolution> <Vref> <Hardware averaging samples>"
NL "\t\tADC Resolution -> 8, 10, 12, 16 (bit)"
NL "\t\t Vref -> 0 (1.2 V), 1 (External)"
NL "\t\tHw Avg Samples -> 0 (disabled), 4, 8, 16, 32", cliFunc_adcInit },
#endif
#if defined(_mk20dx256_) // DAC is only supported on Teensy 3.1
{ "dac", "Set DAC output value, from 0 to 4095 (1/4096 Vref to Vref).", cliFunc_dac },
{ "dacVref", "Set DAC Vref. 0 is 1.2V. 1 is 3.3V.", cliFunc_dacVref },
#endif
{ "echo", "Example command, echos the arguments.", cliFunc_echo },
{ 0, 0, 0 } // Null entry for dictionary end
};
// ----- Functions -----
// Setup
inline void Scan_setup()
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
}
#elif defined(_mk20dx128_) || defined(_mk20dx256_) // ARM
{
// Register Scan CLI dictionary
CLI_registerDictionary( scanCLIDict, scanCLIDictName );
// ADC Setup
VREF_TRM = 0x60;
VREF_SC = 0xE1; // Enable 1.2V Vref
#if defined(_mk20dx256_) // DAC is only supported on Teensy 3.1
// DAC Setup
SIM_SCGC2 |= SIM_SCGC2_DAC0;
DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
#endif
}
#endif
// Main Detection Loop
inline uint8_t Scan_loop()
{
return 0;
}
// Signal KeyIndex_Buffer that it has been properly read
void Scan_finishedWithBuffer( uint8_t sentKeys )
{
}
// Signal that the keys have been properly sent over USB
void Scan_finishedWithUSBBuffer( uint8_t sentKeys )
{
}
// Reset Keyboard
void Scan_resetKeyboard()
{
}
// ----- CLI Command Functions -----
// XXX Just an example command showing how to parse arguments (more complex than generally needed)
void cliFunc_echo( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Parse args until a \0 is found
while ( 1 )
{
2014-04-15 06:59:41 +00:00
print( NL ); // No \r\n by default after the command is entered
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Print out the arg
dPrint( arg1Ptr );
}
}
void cliFunc_adc( char* args )
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
{
}
#elif defined(_mk20dx128_) || defined(_mk20dx256_) // ARM
{
// Parse code from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Set the ADC Channel
uint8_t channel = decToInt( arg1Ptr );
__disable_irq();
ADC0_SC1A = channel;
__enable_irq();
// Number of ADC samples to display
CLI_argumentIsolation( arg2Ptr, &arg1Ptr, &arg2Ptr );
2014-04-15 06:59:41 +00:00
int displayedADC = 1; // Default to 1 read
if ( arg1Ptr ) // If there is an argument, use that instead
{
displayedADC = decToInt( arg1Ptr );
}
// Poll ADC until it gets a value, making sure to serve interrupts on each attempt
while ( displayedADC > 0 )
{
__disable_irq();
// ADC Sample is ready
if ( (ADC0_SC1A & ADC_SC1_COCO) )
{
int result = ADC0_RA;
2014-04-15 06:59:41 +00:00
print( NL );
printInt32( result );
displayedADC--;
2014-04-15 06:59:41 +00:00
// Prepare for another read
if ( displayedADC > 0 )
{
ADC0_SC1A = channel;
}
}
__enable_irq();
yield(); // Make sure interrupts actually get serviced
}
}
#endif
void cliFunc_adcInit( char* args )
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
{
}
#elif defined(_mk20dx128_) || defined(_mk20dx256_) // ARM
{
// Parse code from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Make sure calibration has stopped
ADC0_SC3 = 0;
// Select bit resolution
int bitResolution = decToInt( arg1Ptr );
switch ( bitResolution )
{
case 8: // 8-bit
ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
break;
case 10: // 10-bit
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
break;
case 12: // 12-bit
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
break;
case 16: // 16-bit
ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
break;
default: return; // Do nothing, invalid arg
}
// Select Vref
CLI_argumentIsolation( arg2Ptr, &arg1Ptr, &arg2Ptr );
int vRef = decToInt( arg1Ptr );
switch ( vRef )
{
case 0: // 1.2V internal Vref
ADC0_SC2 = ADC_SC2_REFSEL(1);
break;
case 1: // Vcc/Ext Vref
ADC0_SC2 = ADC_SC2_REFSEL(0);
break;
default: return; // Do nothing, invalid arg
}
// Hardware averaging (and start calibration)
CLI_argumentIsolation( arg2Ptr, &arg1Ptr, &arg2Ptr );
int hardwareAvg = decToInt( arg1Ptr );
switch ( hardwareAvg )
{
case 0: // No hardware averaging
ADC0_SC3 = ADC_SC3_CAL; // Just start calibration
break;
case 4: // 4 sample averaging
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
break;
case 8: // 8 sample averaging
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
break;
case 16: // 16 sample averaging
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
break;
case 32: // 32 sample averaging
ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
break;
default: return; // Do nothing, invalid arg
}
// Wait for calibration
while ( ADC0_SC3 & ADC_SC3_CAL );
// Set calibration
uint16_t sum;
// XXX Why is PJRC doing this? Is the self-calibration not good enough? -HaaTa
// ADC Plus-Side Gain Register
__disable_irq(); // Disable interrupts
sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
sum = (sum / 2) | 0x8000;
ADC0_PG = sum;
print( NL );
2014-04-15 06:59:41 +00:00
info_msg("Calibration ADC0_PG (Plus-Side Gain Register) set to: ");
printInt16( sum );
// ADC Minus-Side Gain Register
// XXX I don't think this is necessary when doing single-ended (as opposed to differential) -HaaTa
// K20P64M72SF1RM.pdf 31.3.10 pg. 666
sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
sum = (sum / 2) | 0x8000;
ADC0_MG = sum;
2014-04-15 06:59:41 +00:00
print( NL );
info_msg("Calibration ADC0_MG (Minus-Side Gain Register) set to: ");
printInt16( sum );
__enable_irq(); // Re-enable interrupts
}
#endif
void cliFunc_dac( char* args )
{
#if defined(_mk20dx256_) // DAC is only supported on Teensy 3.1
// Parse code from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
int dacOut = decToInt( arg1Ptr );
// Make sure the value is between 0 and 4096, otherwise ignore
if ( dacOut >= 0 && dacOut <= 4095 )
{
*(int16_t *) &(DAC0_DAT0L) = dacOut;
}
#endif
}
void cliFunc_dacVref( char* args )
{
#if defined(_mk20dx256_) // DAC is only supported on Teensy 3.1
// Parse code from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
switch ( decToInt( arg1Ptr ) )
{
case 0:
DAC0_C0 = DAC_C0_DACEN; // 1.2V Vref is DACREF_1
break;
case 1:
DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
break;
}
#endif
}