8942ab63d5
- Basic screen initialization and clear is working - Currently SPI is set to a low speed for easy logic analyzer debugging
830 lines
21 KiB
C
830 lines
21 KiB
C
/* Copyright (C) 2014-2015 by Jacob Alexander
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this file. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ----- Includes -----
|
|
|
|
// Compiler Includes
|
|
#include <Lib/ScanLib.h>
|
|
|
|
// Project Includes
|
|
#include <cli.h>
|
|
#include <led.h>
|
|
#include <print.h>
|
|
|
|
// Local Includes
|
|
#include "led_scan.h"
|
|
|
|
|
|
|
|
// ----- Defines -----
|
|
|
|
#define I2C_TxBufferLength 300
|
|
#define I2C_RxBufferLength 8
|
|
|
|
#define LED_BufferLength 144
|
|
|
|
|
|
// ----- Structs -----
|
|
|
|
typedef struct I2C_Buffer {
|
|
uint16_t head;
|
|
uint16_t tail;
|
|
uint8_t sequencePos;
|
|
uint16_t size;
|
|
uint8_t *buffer;
|
|
} I2C_Buffer;
|
|
|
|
typedef struct LED_Buffer {
|
|
uint8_t buffer[LED_BufferLength];
|
|
} LED_Buffer;
|
|
|
|
|
|
|
|
// ----- Function Declarations -----
|
|
|
|
// CLI Functions
|
|
void cliFunc_i2cRecv( char* args );
|
|
void cliFunc_i2cSend( char* args );
|
|
void cliFunc_ledPage( char* args );
|
|
void cliFunc_ledStart( char* args );
|
|
void cliFunc_ledTest( char* args );
|
|
void cliFunc_ledZero( char* args );
|
|
|
|
uint8_t I2C_TxBufferPop();
|
|
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
|
|
uint16_t I2C_BufferLen( I2C_Buffer *buffer );
|
|
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen );
|
|
|
|
|
|
|
|
// ----- Variables -----
|
|
|
|
// Scan Module command dictionary
|
|
CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." );
|
|
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
|
|
CLIDict_Entry( ledPage, "Read the given register page." );
|
|
CLIDict_Entry( ledStart, "Disable software shutdown." );
|
|
CLIDict_Entry( ledTest, "Test out the led pages." );
|
|
CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );
|
|
|
|
CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
|
|
CLIDict_Item( i2cRecv ),
|
|
CLIDict_Item( i2cSend ),
|
|
CLIDict_Item( ledPage ),
|
|
CLIDict_Item( ledStart ),
|
|
CLIDict_Item( ledTest ),
|
|
CLIDict_Item( ledZero ),
|
|
{ 0, 0, 0 } // Null entry for dictionary end
|
|
};
|
|
|
|
|
|
|
|
// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
|
|
// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
|
|
volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
|
|
volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
|
|
|
|
volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr };
|
|
volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr };
|
|
|
|
LED_Buffer LED_pageBuffer;
|
|
|
|
/*
|
|
// A bit mask determining which LEDs are enabled in the ISSI chip
|
|
// All channel mask example
|
|
// 0x00 -> 0x11
|
|
const uint8_t LED_ledEnableMask[] = {
|
|
0xE8, // I2C address
|
|
0x00, // Starting register address
|
|
0xFF, 0xFF, // C1-1 -> C1-16
|
|
0xFF, 0xFF, // C2-1 -> C2-16
|
|
0xFF, 0xFF, // C3-1 -> C3-16
|
|
0xFF, 0xFF, // C4-1 -> C4-16
|
|
0xFF, 0xFF, // C5-1 -> C5-16
|
|
0xFF, 0xFF, // C6-1 -> C6-16
|
|
0xFF, 0xFF, // C7-1 -> C7-16
|
|
0xFF, 0xFF, // C8-1 -> C8-16
|
|
0xFF, 0xFF, // C9-1 -> C9-16
|
|
};
|
|
*/
|
|
|
|
/*
|
|
// A bit mask determining which LEDs are enabled in the ISSI chip
|
|
// Infinity ErgoDox full mask
|
|
// 0x00 -> 0x11
|
|
const uint8_t LED_ledEnableMask[] = {
|
|
0xE8, // I2C address
|
|
0x00, // Starting register address
|
|
0xFC, 0xFC, // C1-1 -> C1-16
|
|
0xFB, 0xFB, // C2-1 -> C2-16
|
|
0xFF, 0xFF, // C3-1 -> C3-16
|
|
0xFE, 0xFE, // C4-1 -> C4-16
|
|
0x7F, 0x7F, // C5-1 -> C5-16
|
|
0xFF, 0xFF, // C6-1 -> C6-16
|
|
0xCF, 0xCF, // C7-1 -> C7-16
|
|
0xC7, 0xC7, // C8-1 -> C8-16
|
|
0x43, 0x43, // C9-1 -> C9-16
|
|
};
|
|
*/
|
|
const uint8_t LED_ledEnableMask[] = {
|
|
0xE8, // I2C address
|
|
0x00, // Starting register address
|
|
0x00, 0x00, // C1-1 -> C1-16
|
|
//0xEC, 0xEC, // C1-1 -> C1-16
|
|
0x00, 0x00, // C2-1 -> C2-16
|
|
0x00, 0x00, // C3-1 -> C3-16
|
|
0x00, 0x00, // C4-1 -> C4-16
|
|
0x00, 0x00, // C5-1 -> C5-16
|
|
0x00, 0x00, // C6-1 -> C6-16
|
|
0x08, 0x08, // C7-1 -> C7-16
|
|
0x00, 0x00, // C8-1 -> C8-16
|
|
0x00, 0x00, // C9-1 -> C9-16
|
|
};
|
|
|
|
|
|
// XXX Pre-fill example of buffers
|
|
const uint8_t examplePage[] = {
|
|
0xE8, // I2C address
|
|
0x24, // Starting register address
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C1-1 -> C1-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C2-1 -> C2-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C3-1 -> C3-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C4-1 -> C4-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C5-1 -> C5-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C6-1 -> C6-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C7-1 -> C7-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C8-1 -> C8-16
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // C9-1 -> C9-16
|
|
};
|
|
|
|
/*
|
|
// XXX Pre-fill example of buffers
|
|
const uint8_t examplePage[] = {
|
|
0xE8, // I2C address
|
|
0x24, // Starting register address
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, // C1-1 -> C1-16
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, // C2-1 -> C2-16
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, // C3-1 -> C3-16
|
|
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, // C4-1 -> C4-16
|
|
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, // C5-1 -> C5-16
|
|
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, // C6-1 -> C6-16
|
|
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, // C7-1 -> C7-16
|
|
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, // C8-1 -> C8-16
|
|
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, // C9-1 -> C9-16
|
|
};
|
|
*/
|
|
|
|
|
|
|
|
// ----- Interrupt Functions -----
|
|
|
|
void i2c0_isr()
|
|
{
|
|
cli(); // Disable Interrupts
|
|
|
|
uint8_t status = I2C0_S; // Read I2C Bus status
|
|
|
|
// Master Mode Transmit
|
|
if ( I2C0_C1 & I2C_C1_TX )
|
|
{
|
|
// Check current use of the I2C bus
|
|
// Currently sending data
|
|
if ( I2C_TxBuffer.sequencePos > 0 )
|
|
{
|
|
// Make sure slave sent an ACK
|
|
if ( status & I2C_S_RXAK )
|
|
{
|
|
// NACK Detected, disable interrupt
|
|
erro_print("I2C NAK detected...");
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
|
|
// Abort Tx Buffer
|
|
I2C_TxBuffer.head = 0;
|
|
I2C_TxBuffer.tail = 0;
|
|
I2C_TxBuffer.sequencePos = 0;
|
|
}
|
|
else
|
|
{
|
|
// Transmit byte
|
|
I2C0_D = I2C_TxBufferPop();
|
|
}
|
|
}
|
|
// Receiving data
|
|
else if ( I2C_RxBuffer.sequencePos > 0 )
|
|
{
|
|
// Master Receive, addr sent
|
|
if ( status & I2C_S_ARBL )
|
|
{
|
|
// Arbitration Lost
|
|
erro_print("Arbitration lost...");
|
|
// TODO Abort Rx
|
|
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
|
|
}
|
|
if ( status & I2C_S_RXAK )
|
|
{
|
|
// Slave Address NACK Detected, disable interrupt
|
|
erro_print("Slave Address I2C NAK detected...");
|
|
// TODO Abort Rx
|
|
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
}
|
|
else
|
|
{
|
|
dbug_print("Attempting to read byte");
|
|
I2C0_C1 = I2C_RxBuffer.sequencePos == 1
|
|
? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
|
|
: I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
dbug_msg("STOP - ");
|
|
printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
|
|
print(NL);
|
|
*/
|
|
|
|
// Delay around STOP to make sure it actually happens...
|
|
delayMicroseconds( 1 );
|
|
I2C0_C1 = I2C_C1_IICEN; // Send STOP
|
|
delayMicroseconds( 7 );
|
|
|
|
// If there is another sequence, start sending
|
|
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
|
|
{
|
|
// Clear status flags
|
|
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
|
|
|
|
// Wait...till the master dies
|
|
while ( I2C0_S & I2C_S_BUSY );
|
|
|
|
// Enable I2C interrupt
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
|
|
|
|
// Transmit byte
|
|
I2C0_D = I2C_TxBufferPop();
|
|
}
|
|
}
|
|
}
|
|
// Master Mode Receive
|
|
else
|
|
{
|
|
// XXX Do we need to handle 2nd last byte?
|
|
//I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
|
|
|
|
// Last byte
|
|
if ( I2C_TxBuffer.sequencePos <= 1 )
|
|
{
|
|
// Change to Tx mode
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
|
|
|
|
// Grab last byte
|
|
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
|
|
|
|
delayMicroseconds( 1 ); // Should be enough time before issuing the stop
|
|
I2C0_C1 = I2C_C1_IICEN; // Send STOP
|
|
}
|
|
else
|
|
{
|
|
// Retrieve data
|
|
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
|
|
}
|
|
}
|
|
|
|
I2C0_S = I2C_S_IICIF; // Clear interrupt
|
|
|
|
sei(); // Re-enable Interrupts
|
|
}
|
|
|
|
|
|
|
|
// ----- Functions -----
|
|
|
|
inline void I2C_setup()
|
|
{
|
|
// Enable I2C internal clock
|
|
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
|
|
|
|
// External pull-up resistor
|
|
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
|
|
// SCL Frequency Divider
|
|
// 400kHz -> 120 (0x85) @ 48 MHz F_BUS
|
|
I2C0_F = 0x85;
|
|
I2C0_FLT = 4;
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
I2C0_C2 = I2C_C2_HDRS; // High drive select
|
|
|
|
// Enable I2C Interrupt
|
|
NVIC_ENABLE_IRQ( IRQ_I2C0 );
|
|
}
|
|
|
|
void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };
|
|
|
|
// Max length of a page + chip id + reg start
|
|
uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page
|
|
fullPage[0] = 0xE8; // Set chip id
|
|
fullPage[1] = startReg; // Set start reg
|
|
|
|
// Iterate through given pages, zero'ing out the given register regions
|
|
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
|
|
{
|
|
// Set page
|
|
pageSetup[2] = page;
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Zero out page
|
|
while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 )
|
|
delay(1);
|
|
}
|
|
}
|
|
|
|
void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Write page to I2C Tx Buffer
|
|
while ( I2C_Send( buffer, len, 0 ) == 0 )
|
|
delay(1);
|
|
|
|
}
|
|
|
|
void LED_readPage( uint8_t len, uint8_t page )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Register Setup
|
|
uint8_t regSetup[] = { 0xE8, 0x00 };
|
|
|
|
// Setup starting register
|
|
while ( I2C_Send( regSetup, sizeof( regSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Register Read Command
|
|
uint8_t regReadCmd[] = { 0xE9 };
|
|
|
|
// Read each register in the page
|
|
for ( uint8_t reg = 0; reg < len; reg++ )
|
|
{
|
|
// Request register data
|
|
while ( I2C_Send( regReadCmd, sizeof( regReadCmd ), 0 ) == 0 )
|
|
delay(1);
|
|
}
|
|
}
|
|
|
|
void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
|
|
|
|
// Reg Write Setup
|
|
uint8_t writeData[] = { 0xE8, reg, val };
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 )
|
|
delay(1);
|
|
}
|
|
|
|
// Setup
|
|
inline void LED_setup()
|
|
{
|
|
// Register Scan CLI dictionary
|
|
CLI_registerDictionary( ledCLIDict, ledCLIDictName );
|
|
|
|
// Initialize I2C
|
|
I2C_setup();
|
|
|
|
/* TODO Make work
|
|
// Zero out Frame Registers
|
|
// This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
|
|
LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers
|
|
|
|
// Disable Hardware shutdown of ISSI chip (pull high)
|
|
GPIOD_PDDR |= (1<<1);
|
|
PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
|
|
GPIOD_PSOR |= (1<<1);
|
|
|
|
// Clear LED Pages
|
|
LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
|
|
|
|
// Enable LEDs based upon mask
|
|
LED_sendPage( (uint8_t*)LED_ledEnableMask, sizeof( LED_ledEnableMask ), 0 );
|
|
|
|
// Disable Software shutdown of ISSI chip
|
|
LED_writeReg( 0x0A, 0x01, 0x0B );
|
|
*/
|
|
}
|
|
|
|
|
|
inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
|
|
{
|
|
uint8_t reTurn = 0;
|
|
|
|
// If sendLen is greater than buffer fail right away
|
|
if ( sendLen > buffer->size )
|
|
return 0;
|
|
|
|
// Calculate new tail to determine if buffer has enough space
|
|
// The first element specifies the expected number of bytes from the slave (+1)
|
|
// The second element in the new buffer is the length of the buffer sequence (+1)
|
|
uint16_t newTail = buffer->tail + sendLen + 2;
|
|
if ( newTail >= buffer->size )
|
|
newTail -= buffer->size;
|
|
|
|
if ( I2C_BufferLen( buffer ) < sendLen + 2 )
|
|
return 0;
|
|
|
|
/*
|
|
print("|");
|
|
printHex( sendLen + 2 );
|
|
print("|");
|
|
printHex( *tail );
|
|
print("@");
|
|
printHex( newTail );
|
|
print("@");
|
|
*/
|
|
|
|
// If buffer is clean, return 1, otherwise 2
|
|
reTurn = buffer->head == buffer->tail ? 1 : 2;
|
|
|
|
// Add to buffer, already know there is enough room (simplifies adding logic)
|
|
uint8_t bufferHeaderPos = 0;
|
|
for ( uint16_t c = 0; c < sendLen; c++ )
|
|
{
|
|
// Add data to buffer
|
|
switch ( bufferHeaderPos )
|
|
{
|
|
case 0:
|
|
buffer->buffer[ buffer->tail ] = recvLen;
|
|
bufferHeaderPos++;
|
|
c--;
|
|
break;
|
|
|
|
case 1:
|
|
buffer->buffer[ buffer->tail ] = sendLen;
|
|
bufferHeaderPos++;
|
|
c--;
|
|
break;
|
|
|
|
default:
|
|
buffer->buffer[ buffer->tail ] = data[ c ];
|
|
break;
|
|
}
|
|
|
|
// Check for wrap-around case
|
|
if ( buffer->tail + 1 >= buffer->size )
|
|
{
|
|
buffer->tail = 0;
|
|
}
|
|
// Normal case
|
|
else
|
|
{
|
|
buffer->tail++;
|
|
}
|
|
}
|
|
|
|
return reTurn;
|
|
}
|
|
|
|
|
|
inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
|
|
{
|
|
// Tail >= Head
|
|
if ( buffer->tail >= buffer->head )
|
|
return buffer->head + buffer->size - buffer->tail;
|
|
|
|
// Head > Tail
|
|
return buffer->head - buffer->tail;
|
|
}
|
|
|
|
|
|
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
|
|
{
|
|
dbug_msg("DATA: ");
|
|
printHex( byte );
|
|
|
|
// Make sure buffer isn't full
|
|
if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
|
|
{
|
|
warn_msg("I2C_BufferPush failed, buffer full: ");
|
|
printHex( byte );
|
|
print( NL );
|
|
return;
|
|
}
|
|
|
|
// Check for wrap-around case
|
|
if ( buffer->tail + 1 >= buffer->size )
|
|
{
|
|
buffer->tail = 0;
|
|
}
|
|
// Normal case
|
|
else
|
|
{
|
|
buffer->tail++;
|
|
}
|
|
|
|
// Add byte to buffer
|
|
buffer->buffer[ buffer->tail ] = byte;
|
|
}
|
|
|
|
|
|
uint8_t I2C_TxBufferPop()
|
|
{
|
|
// Return 0xFF if no buffer left (do not rely on this)
|
|
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
|
|
{
|
|
erro_msg("No buffer to pop an entry from... ");
|
|
printHex( I2C_TxBuffer.head );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.tail );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.sequencePos );
|
|
print(NL);
|
|
return 0xFF;
|
|
}
|
|
|
|
// If there is currently no sequence being sent, the first entry in the RingBuffer is the length
|
|
if ( I2C_TxBuffer.sequencePos == 0 )
|
|
{
|
|
I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
|
|
I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
|
|
I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
|
|
}
|
|
|
|
uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
|
|
|
|
// Prune head
|
|
I2C_TxBuffer.head++;
|
|
|
|
// Wrap-around case
|
|
if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
|
|
I2C_TxBuffer.head = 0;
|
|
|
|
// Decrement buffer sequence (until next stop will be sent)
|
|
I2C_TxBuffer.sequencePos--;
|
|
|
|
/*
|
|
dbug_msg("Popping: ");
|
|
printHex( data );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.head );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.tail );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.sequencePos );
|
|
print(NL);
|
|
*/
|
|
return data;
|
|
}
|
|
|
|
|
|
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
|
|
{
|
|
// Check head and tail pointers
|
|
// If full, return 0
|
|
// If empty, start up I2C Master Tx
|
|
// If buffer is non-empty and non-full, just append to the buffer
|
|
switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
|
|
{
|
|
// Not enough buffer space...
|
|
case 0:
|
|
/*
|
|
erro_msg("Not enough Tx buffer space... ");
|
|
printHex( I2C_TxBuffer.head );
|
|
print(":");
|
|
printHex( I2C_TxBuffer.tail );
|
|
print("+");
|
|
printHex( sendLen );
|
|
print("|");
|
|
printHex( I2C_TxBuffer.size );
|
|
print( NL );
|
|
*/
|
|
return 0;
|
|
|
|
// Empty buffer, initialize I2C
|
|
case 1:
|
|
// Clear status flags
|
|
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
|
|
|
|
// Check to see if we already have control of the bus
|
|
if ( I2C0_C1 & I2C_C1_MST )
|
|
{
|
|
// Already the master (ah yeah), send a repeated start
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
|
|
}
|
|
// Otherwise, seize control
|
|
else
|
|
{
|
|
// Wait...till the master dies
|
|
while ( I2C0_S & I2C_S_BUSY );
|
|
|
|
// Now we're the master (ah yisss), get ready to send stuffs
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
|
|
}
|
|
|
|
// Enable I2C interrupt
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
|
|
|
|
// Depending on what type of transfer, the first byte is configured for R or W
|
|
I2C0_D = I2C_TxBufferPop();
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Dirty buffer, I2C already initialized
|
|
return 2;
|
|
}
|
|
|
|
|
|
|
|
// LED State processing loop
|
|
inline uint8_t LED_scan()
|
|
{
|
|
|
|
// I2C Busy
|
|
// S & I2C_S_BUSY
|
|
//I2C_S_BUSY
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
// ----- CLI Command Functions -----
|
|
|
|
void cliFunc_i2cSend( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Buffer used after interpretting the args, will be sent to I2C functions
|
|
// NOTE: Limited to 8 bytes currently (can be increased if necessary
|
|
#define i2cSend_BuffLenMax 8
|
|
uint8_t buffer[ i2cSend_BuffLenMax ];
|
|
uint8_t bufferLen = 0;
|
|
|
|
// No \r\n by default after the command is entered
|
|
print( NL );
|
|
info_msg("Sending: ");
|
|
|
|
// Parse args until a \0 is found
|
|
while ( bufferLen < i2cSend_BuffLenMax )
|
|
{
|
|
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// If | is found, end sequence and start new one
|
|
if ( *arg1Ptr == '|' )
|
|
{
|
|
print("| ");
|
|
I2C_Send( buffer, bufferLen, 0 );
|
|
bufferLen = 0;
|
|
continue;
|
|
}
|
|
|
|
// Interpret the argument
|
|
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
// Print out the arg
|
|
dPrint( arg1Ptr );
|
|
print(" ");
|
|
}
|
|
|
|
print( NL );
|
|
|
|
I2C_Send( buffer, bufferLen, 0 );
|
|
}
|
|
|
|
void cliFunc_i2cRecv( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Buffer used after interpretting the args, will be sent to I2C functions
|
|
// NOTE: Limited to 8 bytes currently (can be increased if necessary
|
|
#define i2cSend_BuffLenMax 8
|
|
uint8_t buffer[ i2cSend_BuffLenMax ];
|
|
uint8_t bufferLen = 0;
|
|
|
|
// No \r\n by default after the command is entered
|
|
print( NL );
|
|
info_msg("Sending: ");
|
|
|
|
// Parse args until a \0 is found
|
|
while ( bufferLen < i2cSend_BuffLenMax )
|
|
{
|
|
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// If | is found, end sequence and start new one
|
|
if ( *arg1Ptr == '|' )
|
|
{
|
|
print("| ");
|
|
I2C_Send( buffer, bufferLen, 0 );
|
|
bufferLen = 0;
|
|
continue;
|
|
}
|
|
|
|
// Interpret the argument
|
|
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
// Print out the arg
|
|
dPrint( arg1Ptr );
|
|
print(" ");
|
|
}
|
|
|
|
print( NL );
|
|
|
|
I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
|
|
}
|
|
|
|
void cliFunc_ledPage( char* args )
|
|
{
|
|
// Parse number from argument
|
|
// NOTE: Only first argument is used
|
|
char* arg1Ptr;
|
|
char* arg2Ptr;
|
|
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Default to 0 if no argument is given
|
|
uint8_t page = 0;
|
|
|
|
if ( arg1Ptr[0] != '\0' )
|
|
{
|
|
page = (uint8_t)numToInt( arg1Ptr );
|
|
}
|
|
|
|
// No \r\n by default after the command is entered
|
|
print( NL );
|
|
|
|
LED_readPage( 0xB4, page );
|
|
}
|
|
|
|
void cliFunc_ledStart( char* args )
|
|
{
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers
|
|
//LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
|
|
LED_writeReg( 0x0A, 0x01, 0x0B );
|
|
LED_sendPage( (uint8_t*)LED_ledEnableMask, sizeof( LED_ledEnableMask ), 0 );
|
|
|
|
}
|
|
|
|
void cliFunc_ledTest( char* args )
|
|
{
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
LED_sendPage( (uint8_t*)examplePage, sizeof( examplePage ), 0 );
|
|
}
|
|
|
|
void cliFunc_ledZero( char* args )
|
|
{
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs
|
|
}
|
|
|