074134c474
- Added fix for USB Current Change * If called during interrupt, could hang the I2C bus * Delaying I2C writes till scan loop
1082 lines
26 KiB
C
1082 lines
26 KiB
C
/* Copyright (C) 2014-2016 by Jacob Alexander
|
|
*
|
|
* This file is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this file. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ----- Includes -----
|
|
|
|
// Compiler Includes
|
|
#include <Lib/ScanLib.h>
|
|
|
|
// Project Includes
|
|
#include <cli.h>
|
|
#include <kll_defs.h>
|
|
#include <led.h>
|
|
#include <print.h>
|
|
|
|
// Interconnect module if compiled in
|
|
#if defined(ConnectEnabled_define)
|
|
#include <connect_scan.h>
|
|
#endif
|
|
|
|
// Local Includes
|
|
#include "led_scan.h"
|
|
|
|
|
|
|
|
// ----- Defines -----
|
|
|
|
#define I2C_TxBufferLength 300
|
|
#define I2C_RxBufferLength 8
|
|
|
|
#define LED_BufferLength 144
|
|
|
|
// TODO Needs to be defined per keyboard
|
|
#define LED_TotalChannels 144
|
|
|
|
|
|
|
|
// ----- Structs -----
|
|
|
|
typedef struct I2C_Buffer {
|
|
uint16_t head;
|
|
uint16_t tail;
|
|
uint8_t sequencePos;
|
|
uint16_t size;
|
|
uint8_t *buffer;
|
|
} I2C_Buffer;
|
|
|
|
typedef struct LED_Buffer {
|
|
uint8_t i2c_addr;
|
|
uint8_t reg_addr;
|
|
uint8_t buffer[LED_BufferLength];
|
|
} LED_Buffer;
|
|
|
|
|
|
|
|
// ----- Function Declarations -----
|
|
|
|
// CLI Functions
|
|
void cliFunc_i2cRecv ( char* args );
|
|
void cliFunc_i2cSend ( char* args );
|
|
void cliFunc_ledCtrl ( char* args );
|
|
void cliFunc_ledRPage( char* args );
|
|
void cliFunc_ledStart( char* args );
|
|
void cliFunc_ledTest ( char* args );
|
|
void cliFunc_ledWPage( char* args );
|
|
void cliFunc_ledZero ( char* args );
|
|
|
|
uint8_t I2C_TxBufferPop();
|
|
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
|
|
uint16_t I2C_BufferLen( I2C_Buffer *buffer );
|
|
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen );
|
|
|
|
|
|
|
|
// ----- Variables -----
|
|
|
|
// Scan Module command dictionary
|
|
CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." );
|
|
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
|
|
CLIDict_Entry( ledCtrl, "Basic LED control. Args: <mode> <amount> [<index>]" );
|
|
CLIDict_Entry( ledRPage, "Read the given register page." );
|
|
CLIDict_Entry( ledStart, "Disable software shutdown." );
|
|
CLIDict_Entry( ledTest, "Test out the led pages." );
|
|
CLIDict_Entry( ledWPage, "Write to given register page starting at address. i.e. 0x2 0x24 0xF0 0x12" );
|
|
CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );
|
|
|
|
CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
|
|
CLIDict_Item( i2cRecv ),
|
|
CLIDict_Item( i2cSend ),
|
|
CLIDict_Item( ledCtrl ),
|
|
CLIDict_Item( ledRPage ),
|
|
CLIDict_Item( ledStart ),
|
|
CLIDict_Item( ledTest ),
|
|
CLIDict_Item( ledWPage ),
|
|
CLIDict_Item( ledZero ),
|
|
{ 0, 0, 0 } // Null entry for dictionary end
|
|
};
|
|
|
|
|
|
|
|
// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
|
|
// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
|
|
volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
|
|
volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
|
|
|
|
volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr };
|
|
volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr };
|
|
|
|
LED_Buffer LED_pageBuffer;
|
|
|
|
// A bit mask determining which LEDs are enabled in the ISSI chip
|
|
const uint8_t LED_ledEnableMask1[] = {
|
|
0xE8, // I2C address
|
|
0x00, // Starting register address
|
|
ISSILedMask1_define
|
|
};
|
|
|
|
// Default LED brightness
|
|
const uint8_t LED_defaultBrightness1[] = {
|
|
0xE8, // I2C address
|
|
0x24, // Starting register address
|
|
ISSILedBrightness1_define
|
|
};
|
|
|
|
|
|
|
|
// ----- Interrupt Functions -----
|
|
|
|
void i2c0_isr()
|
|
{
|
|
cli(); // Disable Interrupts
|
|
|
|
uint8_t status = I2C0_S; // Read I2C Bus status
|
|
|
|
// Master Mode Transmit
|
|
if ( I2C0_C1 & I2C_C1_TX )
|
|
{
|
|
// Check current use of the I2C bus
|
|
// Currently sending data
|
|
if ( I2C_TxBuffer.sequencePos > 0 )
|
|
{
|
|
// Make sure slave sent an ACK
|
|
if ( status & I2C_S_RXAK )
|
|
{
|
|
// NACK Detected, disable interrupt
|
|
erro_print("I2C NAK detected...");
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
|
|
// Abort Tx Buffer
|
|
I2C_TxBuffer.head = 0;
|
|
I2C_TxBuffer.tail = 0;
|
|
I2C_TxBuffer.sequencePos = 0;
|
|
}
|
|
else
|
|
{
|
|
// Transmit byte
|
|
I2C0_D = I2C_TxBufferPop();
|
|
}
|
|
}
|
|
// Receiving data
|
|
else if ( I2C_RxBuffer.sequencePos > 0 )
|
|
{
|
|
// Master Receive, addr sent
|
|
if ( status & I2C_S_ARBL )
|
|
{
|
|
// Arbitration Lost
|
|
erro_print("Arbitration lost...");
|
|
// TODO Abort Rx
|
|
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
|
|
}
|
|
if ( status & I2C_S_RXAK )
|
|
{
|
|
// Slave Address NACK Detected, disable interrupt
|
|
erro_print("Slave Address I2C NAK detected...");
|
|
// TODO Abort Rx
|
|
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
}
|
|
else
|
|
{
|
|
dbug_msg("Attempting to read byte - ");
|
|
printHex( I2C_RxBuffer.sequencePos );
|
|
print( NL );
|
|
I2C0_C1 = I2C_RxBuffer.sequencePos == 1
|
|
? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
|
|
: I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
dbug_msg("STOP - ");
|
|
printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
|
|
print(NL);
|
|
*/
|
|
|
|
// Delay around STOP to make sure it actually happens...
|
|
delayMicroseconds( 1 );
|
|
I2C0_C1 = I2C_C1_IICEN; // Send STOP
|
|
delayMicroseconds( 7 );
|
|
|
|
// If there is another sequence, start sending
|
|
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
|
|
{
|
|
// Clear status flags
|
|
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
|
|
|
|
// Wait...till the master dies
|
|
while ( I2C0_S & I2C_S_BUSY );
|
|
|
|
// Enable I2C interrupt
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
|
|
|
|
// Transmit byte
|
|
I2C0_D = I2C_TxBufferPop();
|
|
}
|
|
}
|
|
}
|
|
// Master Mode Receive
|
|
else
|
|
{
|
|
// XXX Do we need to handle 2nd last byte?
|
|
//I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
|
|
|
|
// Last byte
|
|
if ( I2C_TxBuffer.sequencePos <= 1 )
|
|
{
|
|
// Change to Tx mode
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
|
|
|
|
// Grab last byte
|
|
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
|
|
|
|
delayMicroseconds( 1 ); // Should be enough time before issuing the stop
|
|
I2C0_C1 = I2C_C1_IICEN; // Send STOP
|
|
}
|
|
else
|
|
{
|
|
// Retrieve data
|
|
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
|
|
}
|
|
}
|
|
|
|
I2C0_S = I2C_S_IICIF; // Clear interrupt
|
|
|
|
sei(); // Re-enable Interrupts
|
|
}
|
|
|
|
|
|
|
|
// ----- Functions -----
|
|
|
|
inline void I2C_setup()
|
|
{
|
|
// Enable I2C internal clock
|
|
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
|
|
|
|
// External pull-up resistor
|
|
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
|
|
|
|
// SCL Frequency Divider
|
|
// 400kHz -> 120 (0x85) @ 48 MHz F_BUS
|
|
I2C0_F = 0x85;
|
|
I2C0_FLT = 4;
|
|
I2C0_C1 = I2C_C1_IICEN;
|
|
I2C0_C2 = I2C_C2_HDRS; // High drive select
|
|
|
|
// Enable I2C Interrupt
|
|
NVIC_ENABLE_IRQ( IRQ_I2C0 );
|
|
}
|
|
|
|
void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };
|
|
|
|
// Max length of a page + chip id + reg start
|
|
uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page
|
|
fullPage[0] = 0xE8; // Set chip id
|
|
fullPage[1] = startReg; // Set start reg
|
|
|
|
// Iterate through given pages, zero'ing out the given register regions
|
|
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
|
|
{
|
|
// Set page
|
|
pageSetup[2] = page;
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Zero out page
|
|
while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 )
|
|
delay(1);
|
|
}
|
|
}
|
|
|
|
void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Write page to I2C Tx Buffer
|
|
while ( I2C_Send( buffer, len, 0 ) == 0 )
|
|
delay(1);
|
|
|
|
}
|
|
|
|
void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page )
|
|
{
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
|
|
|
|
// Reg Write Setup
|
|
uint8_t writeData[] = { 0xE8, reg, val };
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 )
|
|
delay(1);
|
|
}
|
|
|
|
void LED_readPage( uint8_t len, uint8_t page )
|
|
{
|
|
// Software shutdown must be enabled to read registers
|
|
LED_writeReg( 0x0A, 0x00, 0x0B );
|
|
|
|
// Page Setup
|
|
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
|
|
|
|
// Setup page
|
|
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Register Setup
|
|
uint8_t regSetup[] = { 0xE8, 0x00 };
|
|
|
|
// Read each register in the page
|
|
for ( uint8_t reg = 0; reg < len; reg++ )
|
|
{
|
|
// Update register to read
|
|
regSetup[1] = reg;
|
|
|
|
// Configure register
|
|
while ( I2C_Send( regSetup, sizeof( regSetup ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Register Read Command
|
|
uint8_t regReadCmd[] = { 0xE9 };
|
|
|
|
// Request single register byte
|
|
while ( I2C_Send( regReadCmd, sizeof( regReadCmd ), 1 ) == 0 )
|
|
delay(1);
|
|
dbug_print("NEXT");
|
|
}
|
|
|
|
// Disable software shutdown
|
|
LED_writeReg( 0x0A, 0x01, 0x0B );
|
|
}
|
|
|
|
// Setup
|
|
inline void LED_setup()
|
|
{
|
|
// Register Scan CLI dictionary
|
|
CLI_registerDictionary( ledCLIDict, ledCLIDictName );
|
|
|
|
// Initialize I2C
|
|
I2C_setup();
|
|
|
|
// Zero out Frame Registers
|
|
// This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
|
|
LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers
|
|
|
|
// Disable Hardware shutdown of ISSI chip (pull high)
|
|
GPIOB_PDDR |= (1<<16);
|
|
PORTB_PCR16 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
|
|
GPIOB_PSOR |= (1<<16);
|
|
|
|
// Clear LED Pages
|
|
LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
|
|
|
|
// Enable LEDs based upon mask
|
|
LED_sendPage( (uint8_t*)LED_ledEnableMask1, sizeof( LED_ledEnableMask1 ), 0 );
|
|
|
|
// Set default brightness
|
|
LED_sendPage( (uint8_t*)LED_defaultBrightness1, sizeof( LED_defaultBrightness1 ), 0 );
|
|
|
|
// Do not disable software shutdown of ISSI chip unless current is high enough
|
|
// Require at least 150 mA
|
|
// May be enabled/disabled at a later time
|
|
if ( Output_current_available() >= 150 )
|
|
{
|
|
// Disable Software shutdown of ISSI chip
|
|
LED_writeReg( 0x0A, 0x01, 0x0B );
|
|
}
|
|
}
|
|
|
|
|
|
inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
|
|
{
|
|
uint8_t reTurn = 0;
|
|
|
|
// If sendLen is greater than buffer fail right away
|
|
if ( sendLen > buffer->size )
|
|
return 0;
|
|
|
|
// Calculate new tail to determine if buffer has enough space
|
|
// The first element specifies the expected number of bytes from the slave (+1)
|
|
// The second element in the new buffer is the length of the buffer sequence (+1)
|
|
uint16_t newTail = buffer->tail + sendLen + 2;
|
|
if ( newTail >= buffer->size )
|
|
newTail -= buffer->size;
|
|
|
|
if ( I2C_BufferLen( buffer ) < sendLen + 2 )
|
|
return 0;
|
|
|
|
/*
|
|
print("|");
|
|
printHex( sendLen + 2 );
|
|
print("|");
|
|
printHex( *tail );
|
|
print("@");
|
|
printHex( newTail );
|
|
print("@");
|
|
*/
|
|
|
|
// If buffer is clean, return 1, otherwise 2
|
|
reTurn = buffer->head == buffer->tail ? 1 : 2;
|
|
|
|
// Add to buffer, already know there is enough room (simplifies adding logic)
|
|
uint8_t bufferHeaderPos = 0;
|
|
for ( uint16_t c = 0; c < sendLen; c++ )
|
|
{
|
|
// Add data to buffer
|
|
switch ( bufferHeaderPos )
|
|
{
|
|
case 0:
|
|
buffer->buffer[ buffer->tail ] = recvLen;
|
|
bufferHeaderPos++;
|
|
c--;
|
|
break;
|
|
|
|
case 1:
|
|
buffer->buffer[ buffer->tail ] = sendLen;
|
|
bufferHeaderPos++;
|
|
c--;
|
|
break;
|
|
|
|
default:
|
|
buffer->buffer[ buffer->tail ] = data[ c ];
|
|
break;
|
|
}
|
|
|
|
// Check for wrap-around case
|
|
if ( buffer->tail + 1 >= buffer->size )
|
|
{
|
|
buffer->tail = 0;
|
|
}
|
|
// Normal case
|
|
else
|
|
{
|
|
buffer->tail++;
|
|
}
|
|
}
|
|
|
|
return reTurn;
|
|
}
|
|
|
|
|
|
inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
|
|
{
|
|
// Tail >= Head
|
|
if ( buffer->tail >= buffer->head )
|
|
return buffer->head + buffer->size - buffer->tail;
|
|
|
|
// Head > Tail
|
|
return buffer->head - buffer->tail;
|
|
}
|
|
|
|
|
|
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
|
|
{
|
|
dbug_msg("DATA: ");
|
|
printHex( byte );
|
|
|
|
// Make sure buffer isn't full
|
|
if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
|
|
{
|
|
warn_msg("I2C_BufferPush failed, buffer full: ");
|
|
printHex( byte );
|
|
print( NL );
|
|
return;
|
|
}
|
|
|
|
// Check for wrap-around case
|
|
if ( buffer->tail + 1 >= buffer->size )
|
|
{
|
|
buffer->tail = 0;
|
|
}
|
|
// Normal case
|
|
else
|
|
{
|
|
buffer->tail++;
|
|
}
|
|
|
|
// Add byte to buffer
|
|
buffer->buffer[ buffer->tail ] = byte;
|
|
}
|
|
|
|
|
|
uint8_t I2C_TxBufferPop()
|
|
{
|
|
// Return 0xFF if no buffer left (do not rely on this)
|
|
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
|
|
{
|
|
erro_msg("No buffer to pop an entry from... ");
|
|
printHex( I2C_TxBuffer.head );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.tail );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.sequencePos );
|
|
print(NL);
|
|
return 0xFF;
|
|
}
|
|
|
|
// If there is currently no sequence being sent, the first entry in the RingBuffer is the length
|
|
if ( I2C_TxBuffer.sequencePos == 0 )
|
|
{
|
|
I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
|
|
I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
|
|
I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
|
|
}
|
|
|
|
uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
|
|
|
|
// Prune head
|
|
I2C_TxBuffer.head++;
|
|
|
|
// Wrap-around case
|
|
if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
|
|
I2C_TxBuffer.head = 0;
|
|
|
|
// Decrement buffer sequence (until next stop will be sent)
|
|
I2C_TxBuffer.sequencePos--;
|
|
|
|
/*
|
|
dbug_msg("Popping: ");
|
|
printHex( data );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.head );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.tail );
|
|
print(" ");
|
|
printHex( I2C_TxBuffer.sequencePos );
|
|
print(NL);
|
|
*/
|
|
return data;
|
|
}
|
|
|
|
|
|
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
|
|
{
|
|
// Check head and tail pointers
|
|
// If full, return 0
|
|
// If empty, start up I2C Master Tx
|
|
// If buffer is non-empty and non-full, just append to the buffer
|
|
switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
|
|
{
|
|
// Not enough buffer space...
|
|
case 0:
|
|
/*
|
|
erro_msg("Not enough Tx buffer space... ");
|
|
printHex( I2C_TxBuffer.head );
|
|
print(":");
|
|
printHex( I2C_TxBuffer.tail );
|
|
print("+");
|
|
printHex( sendLen );
|
|
print("|");
|
|
printHex( I2C_TxBuffer.size );
|
|
print( NL );
|
|
*/
|
|
return 0;
|
|
|
|
// Empty buffer, initialize I2C
|
|
case 1:
|
|
// Clear status flags
|
|
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
|
|
|
|
// Check to see if we already have control of the bus
|
|
if ( I2C0_C1 & I2C_C1_MST )
|
|
{
|
|
// Already the master (ah yeah), send a repeated start
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
|
|
}
|
|
// Otherwise, seize control
|
|
else
|
|
{
|
|
// Wait...till the master dies
|
|
while ( I2C0_S & I2C_S_BUSY );
|
|
|
|
// Now we're the master (ah yisss), get ready to send stuffs
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
|
|
}
|
|
|
|
// Enable I2C interrupt
|
|
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
|
|
|
|
// Depending on what type of transfer, the first byte is configured for R or W
|
|
I2C0_D = I2C_TxBufferPop();
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Dirty buffer, I2C already initialized
|
|
return 2;
|
|
}
|
|
|
|
|
|
|
|
// LED State processing loop
|
|
unsigned int LED_currentEvent = 0;
|
|
inline uint8_t LED_scan()
|
|
{
|
|
// Check for current change event
|
|
if ( LED_currentEvent )
|
|
{
|
|
// TODO dim LEDs in low power mode instead of shutting off
|
|
if ( LED_currentEvent < 150 )
|
|
{
|
|
// Enable Software shutdown of ISSI chip
|
|
LED_writeReg( 0x0A, 0x00, 0x0B );
|
|
}
|
|
else
|
|
{
|
|
// Disable Software shutdown of ISSI chip
|
|
LED_writeReg( 0x0A, 0x01, 0x0B );
|
|
}
|
|
|
|
LED_currentEvent = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Called by parent Scan Module whenver the available current has changed
|
|
// current - mA
|
|
void LED_currentChange( unsigned int current )
|
|
{
|
|
// Delay action till next LED scan loop (as this callback sometimes occurs during interrupt requests)
|
|
LED_currentEvent = current;
|
|
}
|
|
|
|
|
|
|
|
// ----- Capabilities -----
|
|
|
|
// Basic LED Control Capability
|
|
typedef enum LedControlMode {
|
|
// Single LED Modes
|
|
LedControlMode_brightness_decrease,
|
|
LedControlMode_brightness_increase,
|
|
LedControlMode_brightness_set,
|
|
// Set all LEDs (index argument not required)
|
|
LedControlMode_brightness_decrease_all,
|
|
LedControlMode_brightness_increase_all,
|
|
LedControlMode_brightness_set_all,
|
|
} LedControlMode;
|
|
|
|
typedef struct LedControl {
|
|
LedControlMode mode; // XXX Make sure to adjust the .kll capability if this variable is larger than 8 bits
|
|
uint8_t amount;
|
|
uint16_t index;
|
|
} LedControl;
|
|
|
|
void LED_control( LedControl *control )
|
|
{
|
|
// Only send if we've completed all other transactions
|
|
/*
|
|
if ( I2C_TxBuffer.sequencePos > 0 )
|
|
return;
|
|
*/
|
|
|
|
// Configure based upon the given mode
|
|
// TODO Perhaps do gamma adjustment?
|
|
switch ( control->mode )
|
|
{
|
|
case LedControlMode_brightness_decrease:
|
|
// Don't worry about rolling over, the cycle is quick
|
|
LED_pageBuffer.buffer[ control->index ] -= control->amount;
|
|
break;
|
|
|
|
case LedControlMode_brightness_increase:
|
|
// Don't worry about rolling over, the cycle is quick
|
|
LED_pageBuffer.buffer[ control->index ] += control->amount;
|
|
break;
|
|
|
|
case LedControlMode_brightness_set:
|
|
LED_pageBuffer.buffer[ control->index ] = control->amount;
|
|
break;
|
|
|
|
case LedControlMode_brightness_decrease_all:
|
|
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
|
|
{
|
|
// Don't worry about rolling over, the cycle is quick
|
|
LED_pageBuffer.buffer[ channel ] -= control->amount;
|
|
}
|
|
break;
|
|
|
|
case LedControlMode_brightness_increase_all:
|
|
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
|
|
{
|
|
// Don't worry about rolling over, the cycle is quick
|
|
LED_pageBuffer.buffer[ channel ] += control->amount;
|
|
}
|
|
break;
|
|
|
|
case LedControlMode_brightness_set_all:
|
|
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
|
|
{
|
|
LED_pageBuffer.buffer[ channel ] = control->amount;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Sync LED buffer with ISSI chip buffer
|
|
// TODO Support multiple frames
|
|
LED_pageBuffer.i2c_addr = 0xE8; // Chip 1
|
|
LED_pageBuffer.reg_addr = 0x24; // Brightness section
|
|
LED_sendPage( (uint8_t*)&LED_pageBuffer, sizeof( LED_Buffer ), 0 );
|
|
}
|
|
|
|
uint8_t LED_control_timer = 0;
|
|
void LED_control_capability( uint8_t state, uint8_t stateType, uint8_t *args )
|
|
{
|
|
// Display capability name
|
|
if ( stateType == 0xFF && state == 0xFF )
|
|
{
|
|
print("LED_control_capability(mode,amount,index)");
|
|
return;
|
|
}
|
|
|
|
// Only use capability on press
|
|
// TODO Analog
|
|
if ( stateType == 0x00 && state == 0x03 ) // Not on release
|
|
return;
|
|
|
|
// XXX
|
|
// ISSI Chip locks up if we spam updates too quickly (might be an I2C bug on this side too -HaaTa)
|
|
// Make sure we only send an update every 30 milliseconds at most
|
|
// It may be possible to optimize speed even further, but will likely require serious time with a logic analyzer
|
|
|
|
uint8_t currentTime = (uint8_t)systick_millis_count;
|
|
int8_t compare = (int8_t)(currentTime - LED_control_timer) & 0x7F;
|
|
if ( compare < 30 )
|
|
{
|
|
return;
|
|
}
|
|
LED_control_timer = currentTime;
|
|
|
|
// Set the input structure
|
|
LedControl *control = (LedControl*)args;
|
|
|
|
// Interconnect broadcasting
|
|
#if defined(ConnectEnabled_define)
|
|
uint8_t send_packet = 0;
|
|
uint8_t ignore_node = 0;
|
|
|
|
// By default send to the *next* node, which will determine where to go next
|
|
extern uint8_t Connect_id; // connect_scan.c
|
|
uint8_t addr = Connect_id + 1;
|
|
|
|
switch ( control->mode )
|
|
{
|
|
// Calculate the led address to send
|
|
// If greater than the Total hannels
|
|
// Set address - Total channels
|
|
// Otherwise, ignore
|
|
case LedControlMode_brightness_decrease:
|
|
case LedControlMode_brightness_increase:
|
|
case LedControlMode_brightness_set:
|
|
// Ignore if led is on this node
|
|
if ( control->index < LED_TotalChannels )
|
|
break;
|
|
|
|
// Calculate new led index
|
|
control->index -= LED_TotalChannels;
|
|
|
|
ignore_node = 1;
|
|
send_packet = 1;
|
|
break;
|
|
|
|
// Broadcast to all nodes
|
|
// XXX Do not set broadcasting address
|
|
// Will send command twice
|
|
case LedControlMode_brightness_decrease_all:
|
|
case LedControlMode_brightness_increase_all:
|
|
case LedControlMode_brightness_set_all:
|
|
send_packet = 1;
|
|
break;
|
|
}
|
|
|
|
// Only send interconnect remote capability packet if necessary
|
|
if ( send_packet )
|
|
{
|
|
// generatedKeymap.h
|
|
extern const Capability CapabilitiesList[];
|
|
|
|
// Broadcast layerStackExact remote capability (0xFF is the broadcast id)
|
|
Connect_send_RemoteCapability(
|
|
addr,
|
|
LED_control_capability_index,
|
|
state,
|
|
stateType,
|
|
CapabilitiesList[ LED_control_capability_index ].argCount,
|
|
args
|
|
);
|
|
}
|
|
|
|
// If there is nothing to do on this node, ignore
|
|
if ( ignore_node )
|
|
return;
|
|
#endif
|
|
|
|
// Modify led state of this node
|
|
LED_control( control );
|
|
}
|
|
|
|
|
|
|
|
// ----- CLI Command Functions -----
|
|
|
|
// TODO Currently not working correctly
|
|
void cliFunc_i2cSend( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Buffer used after interpretting the args, will be sent to I2C functions
|
|
// NOTE: Limited to 8 bytes currently (can be increased if necessary
|
|
#define i2cSend_BuffLenMax 8
|
|
uint8_t buffer[ i2cSend_BuffLenMax ];
|
|
uint8_t bufferLen = 0;
|
|
|
|
// No \r\n by default after the command is entered
|
|
print( NL );
|
|
info_msg("Sending: ");
|
|
|
|
// Parse args until a \0 is found
|
|
while ( bufferLen < i2cSend_BuffLenMax )
|
|
{
|
|
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// If | is found, end sequence and start new one
|
|
if ( *arg1Ptr == '|' )
|
|
{
|
|
print("| ");
|
|
I2C_Send( buffer, bufferLen, 0 );
|
|
bufferLen = 0;
|
|
continue;
|
|
}
|
|
|
|
// Interpret the argument
|
|
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
// Print out the arg
|
|
dPrint( arg1Ptr );
|
|
print(" ");
|
|
}
|
|
|
|
print( NL );
|
|
|
|
I2C_Send( buffer, bufferLen, 0 );
|
|
}
|
|
|
|
void cliFunc_i2cRecv( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// Buffer used after interpretting the args, will be sent to I2C functions
|
|
// NOTE: Limited to 8 bytes currently (can be increased if necessary
|
|
#define i2cSend_BuffLenMax 8
|
|
uint8_t buffer[ i2cSend_BuffLenMax ];
|
|
uint8_t bufferLen = 0;
|
|
|
|
// No \r\n by default after the command is entered
|
|
print( NL );
|
|
info_msg("Sending: ");
|
|
|
|
// Parse args until a \0 is found
|
|
while ( bufferLen < i2cSend_BuffLenMax )
|
|
{
|
|
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
// If | is found, end sequence and start new one
|
|
if ( *arg1Ptr == '|' )
|
|
{
|
|
print("| ");
|
|
I2C_Send( buffer, bufferLen, 0 );
|
|
bufferLen = 0;
|
|
continue;
|
|
}
|
|
|
|
// Interpret the argument
|
|
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
|
|
|
|
// Print out the arg
|
|
dPrint( arg1Ptr );
|
|
print(" ");
|
|
}
|
|
|
|
print( NL );
|
|
|
|
I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
|
|
}
|
|
|
|
// TODO Currently not working correctly
|
|
void cliFunc_ledRPage( char* args )
|
|
{
|
|
// Parse number from argument
|
|
// NOTE: Only first argument is used
|
|
char* arg1Ptr;
|
|
char* arg2Ptr;
|
|
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Default to 0 if no argument is given
|
|
uint8_t page = 0;
|
|
|
|
if ( arg1Ptr[0] != '\0' )
|
|
{
|
|
page = (uint8_t)numToInt( arg1Ptr );
|
|
}
|
|
|
|
// No \r\n by default after the command is entered
|
|
print( NL );
|
|
|
|
LED_readPage( 0x1, page );
|
|
//LED_readPage( 0xB4, page );
|
|
}
|
|
|
|
void cliFunc_ledWPage( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
|
|
// First process page and starting address
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
uint8_t page[] = { 0xE8, 0xFD, numToInt( arg1Ptr ) };
|
|
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
uint8_t data[] = { 0xE8, numToInt( arg1Ptr ), 0 };
|
|
|
|
// Set the register page
|
|
while ( I2C_Send( page, sizeof( page ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Process all args
|
|
for ( ;; )
|
|
{
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
break;
|
|
|
|
data[2] = numToInt( arg1Ptr );
|
|
|
|
// Write register location and data to I2C
|
|
while ( I2C_Send( data, sizeof( data ), 0 ) == 0 )
|
|
delay(1);
|
|
|
|
// Increment address
|
|
data[1]++;
|
|
}
|
|
}
|
|
|
|
void cliFunc_ledStart( char* args )
|
|
{
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers
|
|
//LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
|
|
LED_writeReg( 0x0A, 0x01, 0x0B );
|
|
LED_sendPage( (uint8_t*)LED_ledEnableMask1, sizeof( LED_ledEnableMask1 ), 0 );
|
|
|
|
}
|
|
|
|
void cliFunc_ledTest( char* args )
|
|
{
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
LED_sendPage( (uint8_t*)LED_defaultBrightness1, sizeof( LED_defaultBrightness1 ), 0 );
|
|
}
|
|
|
|
void cliFunc_ledZero( char* args )
|
|
{
|
|
print( NL ); // No \r\n by default after the command is entered
|
|
LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs
|
|
}
|
|
|
|
void cliFunc_ledCtrl( char* args )
|
|
{
|
|
char* curArgs;
|
|
char* arg1Ptr;
|
|
char* arg2Ptr = args;
|
|
LedControl control;
|
|
|
|
// First process mode
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
control.mode = numToInt( arg1Ptr );
|
|
|
|
|
|
// Next process amount
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
|
|
// Stop processing args if no more are found
|
|
if ( *arg1Ptr == '\0' )
|
|
return;
|
|
control.amount = numToInt( arg1Ptr );
|
|
|
|
|
|
// Finally process led index, if it exists
|
|
// Default to 0
|
|
curArgs = arg2Ptr;
|
|
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
|
|
control.index = *arg1Ptr == '\0' ? 0 : numToInt( arg1Ptr );
|
|
|
|
// Process request
|
|
LED_control( &control );
|
|
}
|
|
|