Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/ISSILed/led_scan.c
Jacob Alexander 1acc89e2bd Initial LED support for ISSI IS31FL3731C
- Not ready for advanced support yet
- Basic register and page writing support complete
2015-03-21 17:12:41 -07:00

707 lines
17 KiB
C

/* Copyright (C) 2014-2015 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
// Local Includes
#include "led_scan.h"
// ----- Defines -----
#define I2C_TxBufferLength 300
#define I2C_RxBufferLength 8
#define LED_BufferLength 144
// ----- Structs -----
typedef struct I2C_Buffer {
uint16_t head;
uint16_t tail;
uint8_t sequencePos;
uint16_t size;
uint8_t *buffer;
} I2C_Buffer;
typedef struct LED_Buffer {
uint8_t buffer[LED_BufferLength];
} LED_Buffer;
// ----- Function Declarations -----
// CLI Functions
void cliFunc_echo( char* args );
void cliFunc_i2cRecv( char* args );
void cliFunc_i2cSend( char* args );
void cliFunc_ledTest( char* args );
void cliFunc_ledZero( char* args );
uint8_t I2C_TxBufferPop();
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer );
uint16_t I2C_BufferLen( I2C_Buffer *buffer );
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen );
// ----- Variables -----
// Scan Module command dictionary
CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." );
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
CLIDict_Entry( ledTest, "Test out the led pages." );
CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." );
CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
CLIDict_Item( i2cRecv ),
CLIDict_Item( i2cSend ),
CLIDict_Item( ledTest ),
CLIDict_Item( ledZero ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented
// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent
volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ];
volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ];
volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr };
volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr };
LED_Buffer LED_pageBuffer;
// A bit mask determining which LEDs are enabled in the ISSI chip
// 0x00 -> 0x11
const uint8_t LED_ledEnableMask[] = {
0xE8, // I2C address
0x00, // Starting register address
0xFF, 0xFF, // C1-1 -> C1-16
0xFF, 0xFF, // C2-1 -> C2-16
0xFF, 0xFF, // C3-1 -> C3-16
0xFF, 0xFF, // C4-1 -> C4-16
0xFF, 0xFF, // C5-1 -> C5-16
0xFF, 0xFF, // C6-1 -> C6-16
0xFF, 0xFF, // C7-1 -> C7-16
0xFF, 0xFF, // C8-1 -> C8-16
0xFF, 0xFF, // C9-1 -> C9-16
};
// XXX Pre-fill example of buffers
const uint8_t examplePage[] = {
0xE8, // I2C address
0x24, // Starting register address
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, // C1-1 -> C1-16
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, // C2-1 -> C2-16
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, // C3-1 -> C3-16
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, // C4-1 -> C4-16
0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, // C5-1 -> C5-16
0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, // C6-1 -> C6-16
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, // C7-1 -> C7-16
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, // C8-1 -> C8-16
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, // C9-1 -> C9-16
};
// ----- Interrupt Functions -----
void i2c0_isr()
{
cli(); // Disable Interrupts
uint8_t status = I2C0_S; // Read I2C Bus status
// Master Mode Transmit
if ( I2C0_C1 & I2C_C1_TX )
{
// Check current use of the I2C bus
// Currently sending data
if ( I2C_TxBuffer.sequencePos > 0 )
{
// Make sure slave sent an ACK
if ( status & I2C_S_RXAK )
{
// NACK Detected, disable interrupt
erro_print("I2C NAK detected...");
I2C0_C1 = I2C_C1_IICEN;
// Abort Tx Buffer
I2C_TxBuffer.head = 0;
I2C_TxBuffer.tail = 0;
I2C_TxBuffer.sequencePos = 0;
}
else
{
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
// Receiving data
else if ( I2C_RxBuffer.sequencePos > 0 )
{
// Master Receive, addr sent
if ( status & I2C_S_ARBL )
{
// Arbitration Lost
erro_print("Arbitration lost...");
// TODO Abort Rx
I2C0_C1 = I2C_C1_IICEN;
I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt
}
if ( status & I2C_S_RXAK )
{
// Slave Address NACK Detected, disable interrupt
erro_print("Slave Address I2C NAK detected...");
// TODO Abort Rx
I2C0_C1 = I2C_C1_IICEN;
}
else
{
dbug_print("Attempting to read byte");
I2C0_C1 = I2C_RxBuffer.sequencePos == 1
? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read
: I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read
}
}
else
{
/*
dbug_msg("STOP - ");
printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) );
print(NL);
*/
// Delay around STOP to make sure it actually happens...
delayMicroseconds( 1 );
I2C0_C1 = I2C_C1_IICEN; // Send STOP
delayMicroseconds( 7 );
// If there is another sequence, start sending
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size )
{
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );
// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
// Transmit byte
I2C0_D = I2C_TxBufferPop();
}
}
}
// Master Mode Receive
else
{
// XXX Do we need to handle 2nd last byte?
//I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv
// Last byte
if ( I2C_TxBuffer.sequencePos <= 1 )
{
// Change to Tx mode
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
// Grab last byte
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
delayMicroseconds( 1 ); // Should be enough time before issuing the stop
I2C0_C1 = I2C_C1_IICEN; // Send STOP
}
else
{
// Retrieve data
I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer );
}
}
I2C0_S = I2C_S_IICIF; // Clear interrupt
sei(); // Re-enable Interrupts
}
// ----- Functions -----
inline void I2C_setup()
{
// Enable I2C internal clock
SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0
// External pull-up resistor
PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2);
// SCL Frequency Divider
// 400kHz -> 120 (0x85) @ 48 MHz F_BUS
I2C0_F = 0x85;
I2C0_FLT = 4;
I2C0_C1 = I2C_C1_IICEN;
I2C0_C2 = I2C_C2_HDRS; // High drive select
//},
// Enable I2C Interrupt
NVIC_ENABLE_IRQ( IRQ_I2C0 );
}
void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
{
// Page Setup
uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 };
// Max length of a page + chip id + reg start
uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page
fullPage[0] = 0xE8; // Set chip id
fullPage[1] = startReg; // Set start reg
// Iterate through given pages, zero'ing out the given register regions
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
{
// Set page
pageSetup[2] = page;
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Zero out page
while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 )
delay(1);
}
}
void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page )
{
// Page Setup
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
// Write page to I2C Tx Buffer
while ( I2C_Send( buffer, len, 0 ) == 0 )
delay(1);
}
void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page )
{
// Page Setup
uint8_t pageSetup[] = { 0xE8, 0xFD, page };
// Reg Write Setup
uint8_t writeData[] = { 0xE8, reg, val };
// Setup page
while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 )
delay(1);
while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 )
delay(1);
}
// Setup
inline void LED_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( ledCLIDict, ledCLIDictName );
// Initialize I2C
I2C_setup();
// Zero out Frame Registers
// This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers
// Disable Hardware shutdown of ISSI chip (pull high)
GPIOD_PDDR |= (1<<1);
PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOD_PSOR |= (1<<1);
// Clear LED Pages
LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers
// Enable LEDs based upon mask
LED_sendPage( (uint8_t*)LED_ledEnableMask, sizeof( LED_ledEnableMask ), 0 );
// Disable Software shutdown of ISSI chip
LED_writeReg( 0x0A, 0x01, 0x0B );
}
inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer )
{
uint8_t reTurn = 0;
// If sendLen is greater than buffer fail right away
if ( sendLen > buffer->size )
return 0;
// Calculate new tail to determine if buffer has enough space
// The first element specifies the expected number of bytes from the slave (+1)
// The second element in the new buffer is the length of the buffer sequence (+1)
uint16_t newTail = buffer->tail + sendLen + 2;
if ( newTail >= buffer->size )
newTail -= buffer->size;
if ( I2C_BufferLen( buffer ) < sendLen + 2 )
return 0;
/*
print("|");
printHex( sendLen + 2 );
print("|");
printHex( *tail );
print("@");
printHex( newTail );
print("@");
*/
// If buffer is clean, return 1, otherwise 2
reTurn = buffer->head == buffer->tail ? 1 : 2;
// Add to buffer, already know there is enough room (simplifies adding logic)
uint8_t bufferHeaderPos = 0;
for ( uint16_t c = 0; c < sendLen; c++ )
{
// Add data to buffer
switch ( bufferHeaderPos )
{
case 0:
buffer->buffer[ buffer->tail ] = recvLen;
bufferHeaderPos++;
c--;
break;
case 1:
buffer->buffer[ buffer->tail ] = sendLen;
bufferHeaderPos++;
c--;
break;
default:
buffer->buffer[ buffer->tail ] = data[ c ];
break;
}
// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
}
return reTurn;
}
inline uint16_t I2C_BufferLen( I2C_Buffer *buffer )
{
// Tail >= Head
if ( buffer->tail >= buffer->head )
return buffer->head + buffer->size - buffer->tail;
// Head > Tail
return buffer->head - buffer->tail;
}
void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer )
{
// Make sure buffer isn't full
if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) )
{
warn_msg("I2C_BufferPush failed, buffer full: ");
printHex( byte );
print( NL );
return;
}
// Check for wrap-around case
if ( buffer->tail + 1 >= buffer->size )
{
buffer->tail = 0;
}
// Normal case
else
{
buffer->tail++;
}
// Add byte to buffer
buffer->buffer[ buffer->tail ] = byte;
}
uint8_t I2C_TxBufferPop()
{
// Return 0xFF if no buffer left (do not rely on this)
if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size )
{
erro_msg("No buffer to pop an entry from... ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
return 0xFF;
}
// If there is currently no sequence being sent, the first entry in the RingBuffer is the length
if ( I2C_TxBuffer.sequencePos == 0 )
{
I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop
I2C_RxBuffer.sequencePos = I2C_TxBufferPop();
I2C_TxBuffer.sequencePos = I2C_TxBufferPop();
}
uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ];
// Prune head
I2C_TxBuffer.head++;
// Wrap-around case
if ( I2C_TxBuffer.head >= I2C_TxBuffer.size )
I2C_TxBuffer.head = 0;
// Decrement buffer sequence (until next stop will be sent)
I2C_TxBuffer.sequencePos--;
/*
dbug_msg("Popping: ");
printHex( data );
print(" ");
printHex( I2C_TxBuffer.head );
print(" ");
printHex( I2C_TxBuffer.tail );
print(" ");
printHex( I2C_TxBuffer.sequencePos );
print(NL);
*/
return data;
}
uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen )
{
// Check head and tail pointers
// If full, return 0
// If empty, start up I2C Master Tx
// If buffer is non-empty and non-full, just append to the buffer
switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) )
{
// Not enough buffer space...
case 0:
/*
erro_msg("Not enough Tx buffer space... ");
printHex( I2C_TxBuffer.head );
print(":");
printHex( I2C_TxBuffer.tail );
print("+");
printHex( sendLen );
print("|");
printHex( I2C_TxBuffer.size );
print( NL );
*/
return 0;
// Empty buffer, initialize I2C
case 1:
// Clear status flags
I2C0_S = I2C_S_IICIF | I2C_S_ARBL;
// Check to see if we already have control of the bus
if ( I2C0_C1 & I2C_C1_MST )
{
// Already the master (ah yeah), send a repeated start
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX;
}
// Otherwise, seize control
else
{
// Wait...till the master dies
while ( I2C0_S & I2C_S_BUSY );
// Now we're the master (ah yisss), get ready to send stuffs
I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX;
}
// Enable I2C interrupt
I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX;
// Depending on what type of transfer, the first byte is configured for R or W
I2C0_D = I2C_TxBufferPop();
return 1;
}
// Dirty buffer, I2C already initialized
return 2;
}
// LED State processing loop
inline uint8_t LED_scan()
{
// I2C Busy
// S & I2C_S_BUSY
//I2C_S_BUSY
return 0;
}
// ----- CLI Command Functions -----
void cliFunc_i2cSend( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
I2C_Send( buffer, bufferLen, 0 );
bufferLen = 0;
continue;
}
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
I2C_Send( buffer, bufferLen, 0 );
}
void cliFunc_i2cRecv( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint8_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
I2C_Send( buffer, bufferLen, 0 );
bufferLen = 0;
continue;
}
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip
}
void cliFunc_ledTest( char* args )
{
print( NL ); // No \r\n by default after the command is entered
LED_sendPage( (uint8_t*)examplePage, sizeof( examplePage ), 0 );
}
void cliFunc_ledZero( char* args )
{
print( NL ); // No \r\n by default after the command is entered
LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs
}