Kiibohd Controller
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.

scan_loop.c 22KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979
  1. /* Copyright (C) 2011-2013 by Joseph Makuch
  2. * Additions by Jacob Alexander (2013-2014)
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 3.0 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library. If not, see <http://www.gnu.org/licenses/>.
  16. */
  17. // ----- Includes -----
  18. // Compiler Includes
  19. #include <Lib/ScanLib.h>
  20. // Project Includes
  21. #include <led.h>
  22. #include <print.h>
  23. // Local Includes
  24. #include "scan_loop.h"
  25. // ----- Defines -----
  26. // TODO dfj defines...needs commenting and maybe some cleaning...
  27. #define MAX_PRESS_DELTA_MV 450 // As measured from the Teensy ADC pin
  28. #define THRESHOLD_MV (MAX_PRESS_DELTA_MV >> 1)
  29. //(2560 / (0x3ff/2)) ~= 5
  30. #define MV_PER_ADC 5
  31. #define THRESHOLD (THRESHOLD_MV / MV_PER_ADC)
  32. #define STROBE_SETTLE 1
  33. #define TEST_KEY_STROBE (0x05)
  34. #define TEST_KEY_MASK (1 << 0)
  35. #define ADHSM 7
  36. #define RIGHT_JUSTIFY 0
  37. #define LEFT_JUSTIFY (0xff)
  38. // set left or right justification here:
  39. #define JUSTIFY_ADC RIGHT_JUSTIFY
  40. #define ADLAR_MASK (1 << ADLAR)
  41. #ifdef JUSTIFY_ADC
  42. #define ADLAR_BITS ((ADLAR_MASK) & (JUSTIFY_ADC))
  43. #else // defaults to right justification.
  44. #define ADLAR_BITS 0
  45. #endif
  46. // full muxmask
  47. #define FULL_MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2) | (1 << MUX3) | (1 << MUX4))
  48. // F0-f7 pins only muxmask.
  49. #define MUX_MASK ((1 << MUX0) | (1 << MUX1) | (1 << MUX2))
  50. // Strobe Masks
  51. #define D_MASK (0xff)
  52. #define E_MASK (0x03)
  53. #define C_MASK (0xff)
  54. // set ADC clock prescale
  55. #define PRESCALE_MASK ((1 << ADPS0) | (1 << ADPS1) | (1 << ADPS2))
  56. #define PRESCALE_SHIFT (ADPS0)
  57. #define PRESCALE 3
  58. // Max number of strobes supported by the hardware
  59. // Strobe lines are detected at startup, extra strobes cause anomalies like phantom keypresses
  60. #define MAX_STROBES 18
  61. // Number of consecutive samples required to pass debounce
  62. #define DEBOUNCE_THRESHOLD 5
  63. #define MUXES_COUNT 8
  64. #define MUXES_COUNT_XSHIFT 3
  65. #define WARMUP_LOOPS ( 1024 )
  66. #define WARMUP_STOP (WARMUP_LOOPS - 1)
  67. #define SAMPLE_CONTROL 3
  68. #define KEY_COUNT ((MAX_STROBES) * (MUXES_COUNT))
  69. #define RECOVERY_CONTROL 1
  70. #define RECOVERY_SOURCE 0
  71. #define RECOVERY_SINK 2
  72. #define ON 1
  73. #define OFF 0
  74. // mix in 1/4 of the current average to the running average. -> (@mux_mix = 2)
  75. #define MUX_MIX 2
  76. #define IDLE_COUNT_MASK 0xff
  77. #define IDLE_COUNT_SHIFT 8
  78. // av = (av << shift) - av + sample; av >>= shift
  79. // e.g. 1 -> (av + sample) / 2 simple average of new and old
  80. // 2 -> (3 * av + sample) / 4 i.e. 3:1 mix of old to new.
  81. // 3 -> (7 * av + sample) / 8 i.e. 7:1 mix of old to new.
  82. #define KEYS_AVERAGES_MIX_SHIFT 3
  83. // ----- Macros -----
  84. // Select mux
  85. #define SET_FULL_MUX(X) ((ADMUX) = (((ADMUX) & ~(FULL_MUX_MASK)) | ((X) & (FULL_MUX_MASK))))
  86. // ----- Variables -----
  87. // Buffer used to inform the macro processing module which keys have been detected as pressed
  88. volatile uint8_t KeyIndex_Buffer[KEYBOARD_BUFFER];
  89. volatile uint8_t KeyIndex_BufferUsed;
  90. // TODO dfj variables...needs cleaning up and commenting
  91. // Variables used to calculate the starting sense value (averaging)
  92. uint32_t full_avg = 0;
  93. uint32_t high_avg = 0;
  94. uint32_t low_avg = 0;
  95. uint8_t high_count = 0;
  96. uint8_t low_count = 0;
  97. uint8_t ze_strober = 0;
  98. uint16_t samples[MUXES_COUNT];
  99. uint8_t cur_keymap[MAX_STROBES];
  100. uint8_t keymap_change;
  101. uint16_t threshold = THRESHOLD;
  102. uint8_t column = 0;
  103. uint16_t keys_averages_acc[KEY_COUNT];
  104. uint16_t keys_averages [KEY_COUNT];
  105. uint8_t keys_debounce [KEY_COUNT]; // Contains debounce statistics
  106. uint8_t keys_problem [KEY_COUNT]; // Marks keys that should be ignored (determined by averaging at startup)
  107. uint8_t full_samples[KEY_COUNT];
  108. // TODO: change this to 'booting', then count down.
  109. uint16_t boot_count = 0;
  110. uint16_t idle_count = 0;
  111. uint8_t idle = 1;
  112. uint8_t error = 0;
  113. uint16_t error_data = 0;
  114. uint8_t total_strobes = MAX_STROBES;
  115. uint8_t strobe_map[MAX_STROBES];
  116. uint8_t dump_count = 0;
  117. // ----- Function Declarations -----
  118. void dump( void );
  119. void recovery( uint8_t on );
  120. int sampleColumn( uint8_t column );
  121. void capsense_scan( void );
  122. void setup_ADC( void );
  123. void strobe_w( uint8_t strobe_num );
  124. uint8_t testColumn( uint8_t strobe );
  125. // ----- Functions -----
  126. // Initial setup for cap sense controller
  127. inline void Scan_setup()
  128. {
  129. // TODO dfj code...needs cleanup + commenting...
  130. setup_ADC();
  131. DDRC = C_MASK;
  132. PORTC = 0;
  133. DDRD = D_MASK;
  134. PORTD = 0;
  135. DDRE = E_MASK;
  136. PORTE = 0 ;
  137. // Hardcoded strobes for debugging
  138. // Strobes start at 0 and go to 17 (18), not all Model Fs use all of the available strobes
  139. // The single row ribbon connector Model Fs only have a max of 16 strobes
  140. #define KISHSAVER_STROBE
  141. //#define KISHSAVER_OLD_STROBE
  142. //#define TERMINAL_6110668_OLD_STROBE
  143. //#define UNSAVER_OLD_STROBE
  144. #ifdef KISHSAVER_OLD_STROBE
  145. total_strobes = 9;
  146. strobe_map[0] = 2; // Kishsaver doesn't use strobe 0 and 1
  147. strobe_map[1] = 3;
  148. strobe_map[2] = 4;
  149. strobe_map[3] = 5;
  150. strobe_map[4] = 6;
  151. strobe_map[5] = 7;
  152. strobe_map[6] = 8;
  153. strobe_map[7] = 9;
  154. strobe_map[8] = 15; // Test point strobe (3 test points, sense 1, 4, 5)
  155. #elif defined(KISHSAVER_STROBE)
  156. total_strobes = 9;
  157. strobe_map[0] = 15; // Kishsaver doesn't use strobe 0 and 1
  158. strobe_map[1] = 14;
  159. strobe_map[2] = 13;
  160. strobe_map[3] = 12;
  161. strobe_map[4] = 11;
  162. strobe_map[5] = 10;
  163. strobe_map[6] = 9;
  164. strobe_map[7] = 8;
  165. strobe_map[8] = 2; // Test point strobe (3 test points, sense 1, 4, 5)
  166. #elif defined(TERMINAL_6110668_OLD_STROBE)
  167. total_strobes = 16;
  168. strobe_map[0] = 0;
  169. strobe_map[1] = 1;
  170. strobe_map[2] = 2;
  171. strobe_map[3] = 3;
  172. strobe_map[4] = 4;
  173. strobe_map[5] = 5;
  174. strobe_map[6] = 6;
  175. strobe_map[7] = 7;
  176. strobe_map[8] = 8;
  177. strobe_map[9] = 9;
  178. strobe_map[10] = 10;
  179. strobe_map[11] = 11;
  180. strobe_map[12] = 12;
  181. strobe_map[13] = 13;
  182. strobe_map[14] = 14;
  183. strobe_map[15] = 15;
  184. #elif defined(UNSAVER_OLD_STROBE)
  185. total_strobes = 14;
  186. strobe_map[0] = 0;
  187. strobe_map[1] = 1;
  188. strobe_map[2] = 2;
  189. strobe_map[3] = 3;
  190. strobe_map[4] = 4;
  191. strobe_map[5] = 5;
  192. strobe_map[6] = 6;
  193. strobe_map[7] = 7;
  194. strobe_map[8] = 8;
  195. strobe_map[9] = 9;
  196. strobe_map[10] = 10;
  197. strobe_map[11] = 11;
  198. strobe_map[12] = 12;
  199. strobe_map[13] = 13;
  200. #else
  201. // Strobe detection
  202. // TODO
  203. #endif
  204. // TODO all this code should probably be in Scan_resetKeyboard
  205. for ( int i = 0; i < total_strobes; ++i)
  206. {
  207. cur_keymap[i] = 0;
  208. }
  209. // Reset debounce table
  210. for ( int i = 0; i < KEY_COUNT; ++i )
  211. {
  212. keys_debounce[i] = 0;
  213. }
  214. // Warm things up a bit before we start collecting data, taking real samples.
  215. for ( uint8_t i = 0; i < total_strobes; ++i )
  216. {
  217. sampleColumn( strobe_map[i] );
  218. }
  219. // Reset the keyboard before scanning, we might be in a wierd state
  220. // Also sets the KeyIndex_BufferUsed to 0
  221. scan_resetKeyboard();
  222. }
  223. // Main Detection Loop
  224. // This is where the important stuff happens
  225. inline uint8_t Scan_loop()
  226. {
  227. capsense_scan();
  228. // Error case, should not occur in normal operation
  229. if ( error )
  230. {
  231. erro_msg("Problem detected... ");
  232. // Keymap scan debug
  233. for ( uint8_t i = 0; i < total_strobes; ++i )
  234. {
  235. printHex(cur_keymap[strobe_map[i]]);
  236. print(" ");
  237. }
  238. print(" : ");
  239. printHex(error);
  240. error = 0;
  241. print(" : ");
  242. printHex(error_data);
  243. error_data = 0;
  244. // Display keymaps and other debug information if warmup completede
  245. if ( boot_count >= WARMUP_LOOPS )
  246. {
  247. dump();
  248. }
  249. }
  250. // Return non-zero if macro and USB processing should be delayed
  251. // Macro processing will always run if returning 0
  252. // USB processing only happens once the USB send timer expires, if it has not, Scan_loop will be called
  253. // after the macro processing has been completed
  254. return 0;
  255. }
  256. // Signal KeyIndex_Buffer that it has been properly read
  257. // NOTE: Only really required for implementing "tricks" in converters for odd protocols
  258. void Scan_finishedWithBuffer( uint8_t sentKeys )
  259. {
  260. // Convenient place to clear the KeyIndex_Buffer
  261. KeyIndex_BufferUsed = 0;
  262. return;
  263. }
  264. // Signal KeyIndex_Buffer that it has been properly read and sent out by the USB module
  265. // NOTE: Only really required for implementing "tricks" in converters for odd protocols
  266. void Scan_finishedWithUSBBuffer( uint8_t sentKeys )
  267. {
  268. return;
  269. }
  270. inline void capsense_scan()
  271. {
  272. // Accumulated average used for the next scan
  273. uint32_t cur_full_avg = 0;
  274. uint32_t cur_high_avg = 0;
  275. // Reset average counters
  276. low_avg = 0;
  277. low_count = 0;
  278. high_count = 0;
  279. // Scan each of the mapped strobes in the matrix
  280. for ( uint8_t strober = 0; strober < total_strobes; ++strober )
  281. {
  282. uint8_t map_strobe = strobe_map[strober];
  283. uint8_t tries = 1;
  284. while ( tries++ && sampleColumn( map_strobe ) ) { tries &= 0x7; } // don't waste this one just because the last one was poop.
  285. // Only process sense data if warmup is finished
  286. if ( boot_count >= WARMUP_LOOPS )
  287. {
  288. column = testColumn( map_strobe );
  289. idle |= column; // if column has any pressed keys, then we are not idle.
  290. // TODO Is this needed anymore? Really only helps debug -HaaTa
  291. if( column != cur_keymap[map_strobe] && ( boot_count >= WARMUP_LOOPS ) )
  292. {
  293. cur_keymap[map_strobe] = column;
  294. keymap_change = 1;
  295. }
  296. idle |= keymap_change; // if any keys have changed inc. released, then we are not idle.
  297. }
  298. if ( error == 0x50 )
  299. {
  300. error_data |= (((uint16_t)map_strobe) << 12);
  301. }
  302. uint8_t strobe_line = map_strobe << MUXES_COUNT_XSHIFT;
  303. for ( int i = 0; i < MUXES_COUNT; ++i )
  304. {
  305. // discard sketchy low bit, and meaningless high bits.
  306. uint8_t sample = samples[i] >> 1;
  307. full_samples[strobe_line + i] = sample;
  308. keys_averages_acc[strobe_line + i] += sample;
  309. }
  310. // Accumulate 3 total averages (used for determining starting average during warmup)
  311. // full_avg - Average of all sampled lines on the previous scan set
  312. // cur_full_avg - Average of all sampled lines for this scan set
  313. // high_avg - Average of all sampled lines above full_avg on the previous scan set
  314. // cur_high_avg - Average of all sampled lines above full_avg
  315. // low_avg - Average of all sampled lines below or equal to full_avg
  316. if ( boot_count < WARMUP_LOOPS )
  317. {
  318. for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
  319. {
  320. uint8_t sample = samples[i] >> 1;
  321. // Sample is high, add it to high avg
  322. if ( sample > full_avg )
  323. {
  324. high_count++;
  325. cur_high_avg += sample;
  326. }
  327. // Sample is low, add it to low avg
  328. else
  329. {
  330. low_count++;
  331. low_avg += sample;
  332. }
  333. // If sample is higher than previous high_avg, then mark as "problem key"
  334. keys_problem[strobe_line + i] = sample > high_avg ? sample : 0;
  335. // Prepare for next average
  336. cur_full_avg += sample;
  337. }
  338. }
  339. } // for strober
  340. // Update total sense average (only during warm-up)
  341. if ( boot_count < WARMUP_LOOPS )
  342. {
  343. full_avg = cur_full_avg / (total_strobes * MUXES_COUNT);
  344. high_avg = cur_high_avg / high_count;
  345. low_avg /= low_count;
  346. // Update the base average value using the low_avg (best chance of not ignoring a keypress)
  347. for ( int i = 0; i < KEY_COUNT; ++i )
  348. {
  349. keys_averages[i] = low_avg;
  350. keys_averages_acc[i] = low_avg;
  351. }
  352. }
  353. #ifdef VERIFY_TEST_PAD
  354. // verify test key is not down.
  355. if ( ( cur_keymap[TEST_KEY_STROBE] & TEST_KEY_MASK ) )
  356. {
  357. error = 0x05;
  358. error_data = cur_keymap[TEST_KEY_STROBE] << 8;
  359. error_data += full_samples[TEST_KEY_STROBE * 8];
  360. }
  361. #endif
  362. /** aggregate if booting, or if idle;
  363. * else, if not booting, check for dirty USB.
  364. * */
  365. idle_count++;
  366. idle_count &= IDLE_COUNT_MASK;
  367. // Warm up voltage references
  368. if ( boot_count < WARMUP_LOOPS )
  369. {
  370. boot_count++;
  371. switch ( boot_count )
  372. {
  373. // First loop
  374. case 1:
  375. // Show msg at first iteration only
  376. info_msg("Warming up the voltage references");
  377. break;
  378. // Middle iterations
  379. case 300:
  380. case 600:
  381. case 900:
  382. case 1200:
  383. print(".");
  384. break;
  385. // Last loop
  386. case WARMUP_STOP:
  387. print("\n");
  388. info_msg("Warmup finished using ");
  389. printInt16( WARMUP_LOOPS );
  390. print(" iterations\n");
  391. // Display the final calculated averages of all the sensed strobes
  392. info_msg("Full average (");
  393. printInt8( total_strobes * MUXES_COUNT );
  394. print("): ");
  395. printHex( full_avg );
  396. print(" High average (");
  397. printInt8( high_count );
  398. print("): ");
  399. printHex( high_avg );
  400. print(" Low average (");
  401. printInt8( low_count );
  402. print("): ");
  403. printHex( low_avg );
  404. print("\n");
  405. // Display problem keys, and the sense value at the time
  406. for ( uint8_t key = 0; key < KEY_COUNT; key++ )
  407. {
  408. if ( keys_problem[key] )
  409. {
  410. warn_msg("Problem key detected: ");
  411. printHex( key );
  412. print(" (");
  413. printHex( keys_problem[key] );
  414. print(")\n");
  415. }
  416. }
  417. info_print("If problem keys were detected, and were being held down, they will be reset as soon as let go");
  418. break;
  419. }
  420. }
  421. else
  422. {
  423. // Reset accumulators and idle flag/counter
  424. if ( keymap_change )
  425. {
  426. for ( uint8_t c = 0; c < KEY_COUNT; ++c ) { keys_averages_acc[c] = 0; }
  427. idle_count = 0;
  428. idle = 0;
  429. keymap_change = 0;
  430. }
  431. if ( !idle_count )
  432. {
  433. if( idle )
  434. {
  435. // aggregate
  436. for ( uint8_t i = 0; i < KEY_COUNT; ++i )
  437. {
  438. uint16_t acc = keys_averages_acc[i] >> IDLE_COUNT_SHIFT;
  439. uint32_t av = keys_averages[i];
  440. av = (av << KEYS_AVERAGES_MIX_SHIFT) - av + acc;
  441. av >>= KEYS_AVERAGES_MIX_SHIFT;
  442. keys_averages[i] = av;
  443. keys_averages_acc[i] = 0;
  444. }
  445. }
  446. if ( boot_count >= WARMUP_LOOPS )
  447. {
  448. dump();
  449. }
  450. }
  451. }
  452. }
  453. void setup_ADC()
  454. {
  455. // disable adc digital pins.
  456. DIDR1 |= (1 << AIN0D) | (1<<AIN1D); // set disable on pins 1,0.
  457. DDRF = 0x0;
  458. PORTF = 0x0;
  459. uint8_t mux = 0 & 0x1f; // 0 == first. // 0x1e = 1.1V ref.
  460. // 0 = external aref 1,1 = 2.56V internal ref
  461. uint8_t aref = ((1 << REFS1) | (1 << REFS0)) & ((1 << REFS1) | (1 << REFS0));
  462. uint8_t adate = (1 << ADATE) & (1 << ADATE); // trigger enable
  463. uint8_t trig = 0 & ((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2)); // 0 = free running
  464. // ps2, ps1 := /64 ( 2^6 ) ps2 := /16 (2^4), ps1 := 4, ps0 :=2, PS1,PS0 := 8 (2^8)
  465. uint8_t prescale = ( ((PRESCALE) << PRESCALE_SHIFT) & PRESCALE_MASK ); // 001 == 2^1 == 2
  466. uint8_t hispeed = (1 << ADHSM);
  467. uint8_t en_mux = (1 << ACME);
  468. ADCSRA = (1 << ADEN) | prescale; // ADC enable
  469. // select ref.
  470. //ADMUX |= ((1 << REFS1) | (1 << REFS0)); // 2.56 V internal.
  471. //ADMUX |= ((1 << REFS0) ); // Vcc with external cap.
  472. //ADMUX &= ~((1 << REFS1) | (1 << REFS0)); // 0,0 : aref.
  473. ADMUX = aref | mux | ADLAR_BITS;
  474. // set free-running
  475. ADCSRA |= adate; // trigger enable
  476. ADCSRB = en_mux | hispeed | trig | (ADCSRB & ~((1 << ADTS0) | (1 << ADTS1) | (1 << ADTS2))); // trigger select free running
  477. ADCSRA |= (1 << ADEN); // ADC enable
  478. ADCSRA |= (1 << ADSC); // start conversions q
  479. }
  480. void recovery( uint8_t on )
  481. {
  482. DDRB |= (1 << RECOVERY_CONTROL);
  483. PORTB &= ~(1 << RECOVERY_SINK); // SINK always zero
  484. DDRB &= ~(1 << RECOVERY_SOURCE); // SOURCE high imp
  485. if ( on )
  486. {
  487. // set strobes to sink to gnd.
  488. DDRC |= C_MASK;
  489. DDRD |= D_MASK;
  490. DDRE |= E_MASK;
  491. PORTC &= ~C_MASK;
  492. PORTD &= ~D_MASK;
  493. PORTE &= ~E_MASK;
  494. DDRB |= (1 << RECOVERY_SINK); // SINK pull
  495. PORTB |= (1 << RECOVERY_CONTROL);
  496. PORTB |= (1 << RECOVERY_SOURCE); // SOURCE high
  497. DDRB |= (1 << RECOVERY_SOURCE);
  498. }
  499. else
  500. {
  501. PORTB &= ~(1 << RECOVERY_CONTROL);
  502. DDRB &= ~(1 << RECOVERY_SOURCE);
  503. PORTB &= ~(1 << RECOVERY_SOURCE); // SOURCE low
  504. DDRB &= ~(1 << RECOVERY_SINK); // SINK high-imp
  505. }
  506. }
  507. void hold_sample( uint8_t on )
  508. {
  509. if ( !on )
  510. {
  511. PORTB |= (1 << SAMPLE_CONTROL);
  512. DDRB |= (1 << SAMPLE_CONTROL);
  513. }
  514. else
  515. {
  516. DDRB |= (1 << SAMPLE_CONTROL);
  517. PORTB &= ~(1 << SAMPLE_CONTROL);
  518. }
  519. }
  520. void strobe_w( uint8_t strobe_num )
  521. {
  522. PORTC &= ~(C_MASK);
  523. PORTD &= ~(D_MASK);
  524. PORTE &= ~(E_MASK);
  525. // Strobe table
  526. // Not all strobes are used depending on which are detected
  527. switch ( strobe_num )
  528. {
  529. case 0: PORTD |= (1 << 0); break;
  530. case 1: PORTD |= (1 << 1); break;
  531. case 2: PORTD |= (1 << 2); break;
  532. case 3: PORTD |= (1 << 3); break;
  533. case 4: PORTD |= (1 << 4); break;
  534. case 5: PORTD |= (1 << 5); break;
  535. case 6: PORTD |= (1 << 6); break;
  536. case 7: PORTD |= (1 << 7); break;
  537. case 8: PORTE |= (1 << 0); break;
  538. case 9: PORTE |= (1 << 1); break;
  539. case 10: PORTC |= (1 << 0); break;
  540. case 11: PORTC |= (1 << 1); break;
  541. case 12: PORTC |= (1 << 2); break;
  542. case 13: PORTC |= (1 << 3); break;
  543. case 14: PORTC |= (1 << 4); break;
  544. case 15: PORTC |= (1 << 5); break;
  545. case 16: PORTC |= (1 << 6); break;
  546. case 17: PORTC |= (1 << 7); break;
  547. default:
  548. break;
  549. }
  550. }
  551. inline uint16_t getADC(void)
  552. {
  553. ADCSRA |= (1 << ADIF); // clear int flag by writing 1.
  554. //wait for last read to complete.
  555. while ( !( ADCSRA & (1 << ADIF) ) );
  556. return ADC; // return sample
  557. }
  558. int sampleColumn_8x( uint8_t column, uint16_t * buffer )
  559. {
  560. // ensure all probe lines are driven low, and chill for recovery delay.
  561. ADCSRA |= (1 << ADEN) | (1 << ADSC); // enable and start conversions
  562. PORTC &= ~C_MASK;
  563. PORTD &= ~D_MASK;
  564. PORTE &= ~E_MASK;
  565. PORTF = 0;
  566. DDRF = 0;
  567. recovery( OFF );
  568. strobe_w( column );
  569. hold_sample( OFF );
  570. SET_FULL_MUX( 0 );
  571. // Allow strobes to settle
  572. for ( uint8_t i = 0; i < STROBE_SETTLE; ++i ) { getADC(); }
  573. hold_sample( ON );
  574. uint8_t mux = 0;
  575. SET_FULL_MUX( mux );
  576. getADC(); // throw away; unknown mux.
  577. do {
  578. SET_FULL_MUX( mux + 1 ); // our *next* sample will use this
  579. // retrieve current read.
  580. buffer[mux] = getADC();
  581. mux++;
  582. } while ( mux < 8 );
  583. hold_sample( OFF );
  584. recovery( ON );
  585. // turn off adc.
  586. ADCSRA &= ~(1 << ADEN);
  587. // pull all columns' strobe-lines low.
  588. DDRC |= C_MASK;
  589. DDRD |= D_MASK;
  590. DDRE |= E_MASK;
  591. PORTC &= ~C_MASK;
  592. PORTD &= ~D_MASK;
  593. PORTE &= ~E_MASK;
  594. return 0;
  595. }
  596. int sampleColumn( uint8_t column )
  597. {
  598. int rval = 0;
  599. rval = sampleColumn_8x( column, samples );
  600. return rval;
  601. }
  602. uint8_t testColumn( uint8_t strobe )
  603. {
  604. uint16_t db_delta = 0;
  605. uint8_t db_sample = 0;
  606. uint16_t db_threshold = 0;
  607. uint8_t column = 0;
  608. uint8_t bit = 1;
  609. for ( uint8_t mux = 0; mux < MUXES_COUNT; ++mux )
  610. {
  611. uint16_t delta = keys_averages[(strobe << MUXES_COUNT_XSHIFT) + mux];
  612. uint8_t key = (strobe << MUXES_COUNT_XSHIFT) + mux;
  613. // Check if this is a bad key (e.g. test point, or non-existent key)
  614. if ( keys_problem[key] )
  615. {
  616. // If the sample value of the problem key goes below full_avg (overall initial average)
  617. // re-enable the key
  618. if ( (db_sample = samples[mux] >> 1) < full_avg )
  619. {
  620. info_msg("Re-enabling problem key: ");
  621. printHex( key );
  622. print("\n");
  623. keys_problem[key] = 0;
  624. }
  625. // Otherwise, don't waste any more cycles processing the problem key
  626. else
  627. {
  628. continue;
  629. }
  630. }
  631. // Keypress detected
  632. // db_sample (uint8_t), discard meaningless high bit, and garbage low bit
  633. if ( (db_sample = samples[mux] >> 1) > (db_threshold = threshold) + (db_delta = delta) )
  634. {
  635. column |= bit;
  636. // Only register keypresses once the warmup is complete, or not enough debounce info
  637. if ( keys_debounce[key] <= DEBOUNCE_THRESHOLD )
  638. {
  639. // Add to the Macro processing buffer if debounce criteria met
  640. // Automatically handles converting to a USB code and sending off to the PC
  641. if ( keys_debounce[key] == DEBOUNCE_THRESHOLD )
  642. {
  643. //#define KEYSCAN_DEBOUNCE_DEBUG
  644. #ifdef KEYSCAN_DEBOUNCE_DEBUG
  645. // Debug message
  646. print("0x");
  647. printHex_op( key, 2 );
  648. print(" ");
  649. #endif
  650. // Only add the key to the buffer once
  651. // NOTE: Buffer can easily handle multiple adds, just more efficient
  652. // and nicer debug messages :P
  653. //Macro_bufferAdd( key );
  654. }
  655. keys_debounce[key]++;
  656. #define KEYSCAN_THRESHOLD_DEBUG
  657. #ifdef KEYSCAN_THRESHOLD_DEBUG
  658. // Debug message
  659. // <key> [<strobe>:<mux>] : <sense val> : <delta + threshold> : <margin>
  660. dbug_msg("0x");
  661. printHex_op( key, 2 );
  662. print(" [");
  663. printInt8( strobe );
  664. print(":");
  665. printInt8( mux );
  666. print("] : ");
  667. printHex( db_sample ); // Sense
  668. print(" : ");
  669. printHex( db_threshold );
  670. print("+");
  671. printHex( db_delta );
  672. print("=");
  673. printHex( db_threshold + db_delta ); // Sense compare
  674. print(" : ");
  675. printHex( db_sample - ( db_threshold + db_delta ) ); // Margin
  676. print("\n");
  677. #endif
  678. }
  679. }
  680. // Clear debounce entry if no keypress detected
  681. else
  682. {
  683. // If the key was previously pressed, remove from the buffer
  684. for ( uint8_t c = 0; c < KeyIndex_BufferUsed; c++ )
  685. {
  686. // Key to release found
  687. if ( KeyIndex_Buffer[c] == key )
  688. {
  689. // Shift keys from c position
  690. for ( uint8_t k = c; k < KeyIndex_BufferUsed - 1; k++ )
  691. KeyIndex_Buffer[k] = KeyIndex_Buffer[k + 1];
  692. // Decrement Buffer
  693. KeyIndex_BufferUsed--;
  694. break;
  695. }
  696. }
  697. // Clear debounce entry
  698. keys_debounce[key] = 0;
  699. }
  700. bit <<= 1;
  701. }
  702. return column;
  703. }
  704. void dump(void) {
  705. #ifdef DEBUG_FULL_SAMPLES_AVERAGES
  706. // we don't want to debug-out during the measurements.
  707. if ( !dump_count )
  708. {
  709. // Averages currently set per key
  710. for ( int i = 0; i < KEY_COUNT; ++i )
  711. {
  712. if ( !(i & 0x0f) )
  713. {
  714. print("\n");
  715. }
  716. else if ( !(i & 0x07) )
  717. {
  718. print(" ");
  719. }
  720. print(" ");
  721. printHex( keys_averages[i] );
  722. }
  723. print("\n");
  724. // Previously read full ADC scans?
  725. for ( int i = 0; i< KEY_COUNT; ++i)
  726. {
  727. if ( !(i & 0x0f) )
  728. {
  729. print("\n");
  730. }
  731. else if ( !(i & 0x07) )
  732. {
  733. print(" ");
  734. }
  735. print(" ");
  736. printHex(full_samples[i]);
  737. }
  738. }
  739. #endif
  740. #ifdef DEBUG_STROBE_SAMPLES_AVERAGES
  741. // Per strobe information
  742. uint8_t cur_strober = ze_strober;
  743. print("\n");
  744. printHex(cur_strober);
  745. // Previously read ADC scans on current strobe
  746. print(" :");
  747. for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
  748. {
  749. print(" ");
  750. printHex(full_samples[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
  751. }
  752. // Averages current set on current strobe
  753. print(" :");
  754. for ( uint8_t i = 0; i < MUXES_COUNT; ++i )
  755. {
  756. print(" ");
  757. printHex(keys_averages[(cur_strober << MUXES_COUNT_XSHIFT) + i]);
  758. }
  759. #endif
  760. #ifdef DEBUG_USB_KEYMAP
  761. print("\n ");
  762. // Current keymap values
  763. for ( uint8_t i = 0; i < total_strobes; ++i )
  764. {
  765. printHex(cur_keymap[i]);
  766. print(" ");
  767. }
  768. #endif
  769. ze_strober++;
  770. ze_strober &= 0xf;
  771. dump_count++;
  772. dump_count &= 0x0f;
  773. }