1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
tmk_keyboard_custom/doc/keymap.md
tmk 71381457fa Squashed 'tmk_core/' changes from ee8c5ba..d5c5ac6
d5c5ac6 Merge branch 'develop'
5957682 Merge branch 'hotfix-mediakey'
a478c62 Merge branch 'hotfix-vusb'
cccebfe Merge branch 'njbair-docfix'
0aaab57 Clean up wording in keymap example
dc8bbc3 Clarify layer precedence
9e0b4c1 clarify layer documentation
915eb48 core: Fix media/consumer keys
88f90f3 Fix for VUSB configuration
3e290cd Fix including board.mk in chibios.mk
32c69e0 Merge branch 'newapi' into develop
c9a56f9 Merge remote-tracking branch 'flabbergast/chibios' into develop
01e33ea Fix chibios and mbed common.mk for hook.c
bea79d9 hook: Change func name of usb events
3e97536 hook: Change file and func names(*_hook -> hook_*)
c286d8c Merge pull request #10 from fredizzimo/chibios-contrib2
062d74e Update ChibiOS instructions
d47150f Add support for new version of ChibiOS and Contrib
62b5401 Chibios: disable LTO (link-time optimisation).
c64e9aa hooks: Fix for LUFA
54e68b0 hooks: Remove led_restore_hook
325c09d Chibios: make the default bootloader_jump redefinable (weak).
078c722 Chibios: fix STM32_BOOTLOADER_ADDRESS name.
e73cfe5 hooks: Fix for keyboard LED update
e6120c5 Implement basic hooks.
7c370e9 Chibios: Update the main chibios README.
7f0198d Chibios: implement sleep LED for STM32.
afef9b4 Fix hard-coded path of CHIBIOS
95c5b19 Merge pull request #7 from fredizzimo/sysvsize
27128a8 Sysv format for ChibiOS arm-none-eabi-size
d4b8e68 core: Fix chibios user compile options
b85d462 Merge branch 'chibios' of https://github.com/flabbergast/tmk_keyboard into flabbergast_chibios
de41aa1 core: Fix ps2_mouse.c debug print
d79d925 Removed duplicate debug message code and surrounded it with IFDEF as needed
8f28589 Chibios: Revert common.mk change (fix AVR linking problem).
ec9eff2 Chibios: cleanup usb_main code.
28c4665 Chibios: Fix a HardFault bug (wait after start).

git-subtree-dir: tmk_core
git-subtree-split: d5c5ac63e60dfc6da6661a21bd968b4d577a27d5
2016-04-21 14:35:48 +09:00

27 KiB

Keymap framework - how to define your keymap

NOTE: This is not final version, may be inconsistent with source code and changed occasionally for a while.

0. Keymap and layers

The keymap is an array composed of one or more layers. Each layer is an array of keycodes, defining actions for each physical key. Layers can be activated and deactivated independently. Multiple layers may be active at once, resulting in the currently-active layer state. Each layer has an index between 0-31. As active layers are stacked together, higher layers take precedence over lower layers.

Keymap: 32 Layers                   Layer: Keycode matrix
-----------------                   ---------------------
stack of layers                     array_of_keycode[row][column]
       ____________ precedence               _______________________
      /           / | high                  / ESC / F1  / F2  / F3   ....
  31 /___________// |                      /-----/-----/-----/-----
  30 /___________// |                     / TAB /  Q  /  W  /  E   ....
  29 /___________/  |                    /-----/-----/-----/-----
   :   _:_:_:_:_:__ |               :   /LCtrl/  A  /  S  /  D   ....
   :  / : : : : : / |               :  /  :     :     :     :
   2 /___________// |               2 `--------------------------
   1 /___________// |               1 `--------------------------
   0 /___________/  V low           0 `--------------------------

Note: The keymap array is limited to 32 layers.

0.1 Layer state

The current keymap layer state is determined by two parameters: the default layer, and the individual layer states. Changing the default layer is useful for switching key layouts completely; for example, switching to Dvorak, Colemak or Workman instead of QWERTY. Individual layer states, on the other hand, can be used to overlay the base layer with other functions such as navigation keys, function keys (F1-F12), media keys or other actions.

Because the default layer is really just a special case affecting the overall layer state, it is important to first understand how the layer state is determined.

0.1.1 The layer state

The layer state indicates the current on/off status of all layers. It is defined in the firmware by a 32-bit integer, layer_state, which stores each layer's on/off status in a single bit: 0 for off, 1 for on. As layers are activated and deactivated, their respective bits are flipped, changing the value of layer_state.

Overlay feature layer
---------------------      bit|status
       ____________        ---+------
  31  /           /        31 |   0
  30 /___________// -----> 30 |   1
  29 /___________/  -----> 29 |   1
   :                        : |   :
   :   ____________         : |   :
   2  /           /         2 |   0
,->1 /___________/  ----->  1 |   1
|  0                        0 |   0
|                                 +
`--- default_layer = 1            |
     layer_state   = 0x60000002 <-'

0.1.2 The default layer

The default layer is the base keymap layer (0-31) which is always active and considered the "bottom" of the stack. When the firmware boots, the default layer is the only active layer. It is set to layer 0 by default, though this can be changed in config.h via Boot Magic settings.

Initial state of Keymap          Change base layout
-----------------------          ------------------

  31                               31
  30                               30
  29                               29
   :                                :
   :                                :   ____________
   2   ____________                 2  /           /
   1  /           /              ,->1 /___________/
,->0 /___________/               |  0
|                                |
`--- default_layer = 0           `--- default_layer = 1
     layer_state   = 0x00000001       layer_state   = 0x00000002

Note that the default_layer_state variable only determines the lowest value to which layer_state may be set, and that default_layer_state is used by the core firmware when determining the starting value of layer_state before applying changes. In other words, the default layer will always be set to on in layer_state.

The default layer is defined in the firmware by the default_layer_state variable, which is identical in format to the layer_state variable exlpained above. The value may be changed using the following functions:

  • default_layer_state_set(state) sets the state to the specified 32-bit integer value.
  • AND/OR/XOR functions set the state based on a boolean logic comparison between the current state and the specified 32-bit integer value:
    • default_layer_state_and(state)
    • default_layer_state_or(state)
    • default_layer_state_xor(state)

For example, to set layer 3 as the default layer:

// convert 3 to a 32-bit unsigned long value, and set the default layer
default_layer_state_set(1UL<<3);

0.2 Layer Precedence and Transparency

Note that higher layers have priority in the layer stack. The firmware starts at the topmost active layer, and works down to the bottom to find the an active keycode. Once the search encounters any keycode other than KC_TRNS (transparent) on an active layer, the search is halted and the remaining lower layers aren't examined, even if they are active.

Note: a layer must be activated before it may be included in the stack search.

KC_TRNS is a special placeholder which can be used on overlay layers. This allows for the creation of "partial" layers which fall back on the lower layers, eliminating a good deal of repetition in keymap files.

0.3 Keymap Example

The keymap is defined in the keymaps[] array, a 2-dimensional array of rows and columns corresponding to positions in the keyboard matrix. But most often the layers are defined using C macros to allow for easier reading and editing of the keymap files. To use complex actions you need to define Fn keycodes in the fn_actions[] array.

This is a keymap example for the HHKB keyboard. This example has three layers: the QWERTY base layer, and two overlay layers for cursor and mousekey control, respectively. In this example,

Fn0 is a momentary layer switching key--you can use keys on the Cursor layer while holding the key.

Fn1 is a momentary layer switching key with tapping function--tapping the key as one would normally use it, sends the semicolon ';' keycode, while holding the key down switches layers.

Fn2 is a toggle layer switch key--pressing the key toggles the layer on until you press it again.

You can find other keymap definitions in file keymap.c located on project directories.

static const uint8_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
    /* 0: Qwerty
     * ,-----------------------------------------------------------.
     * |Esc|  1|  2|  3|  4|  5|  6|  7|  8|  9|  0|  -|  =|  \|  `|
     * |-----------------------------------------------------------|
     * |Tab  |  Q|  W|  E|  R|  T|  Y|  U|  I|  O|  P|  [|  ]|Backs|
     * |-----------------------------------------------------------|
     * |Contro|  A|  S|  D|  F|  G|  H|  J|  K|  L|Fn1|  '|Enter   |
     * |-----------------------------------------------------------|
     * |Shift   |  Z|  X|  C|  V|  B|  N|  M|  ,|  .|  /|Shift |Fn0|
     * `-----------------------------------------------------------'
     *       |Gui|Alt  |Space                  |Alt  |Fn2|
     *       `-------------------------------------------'
     */
    KEYMAP(ESC, 1,   2,   3,   4,   5,   6,   7,   8,   9,   0,   MINS,EQL, BSLS,GRV, \
           TAB, Q,   W,   E,   R,   T,   Y,   U,   I,   O,   P,   LBRC,RBRC,BSPC, \
           LCTL,A,   S,   D,   F,   G,   H,   J,   K,   L,   FN1, QUOT,ENT, \
           LSFT,Z,   X,   C,   V,   B,   N,   M,   COMM,DOT, SLSH,RSFT,FN0, \
                LGUI,LALT,          SPC,                RALT,FN2),
    /* 1: Cursor(HHKB mode)
     * ,-----------------------------------------------------------.
     * |Pwr| F1| F2| F3| F4| F5| F6| F7| F8| F9|F10|F11|F12|Ins|Del|
     * |-----------------------------------------------------------|
     * |Caps |   |   |   |   |   |   |   |Psc|Slk|Pus|Up |   |Backs|
     * |-----------------------------------------------------------|
     * |Contro|VoD|VoU|Mut|   |   |  *|  /|Hom|PgU|Lef|Rig|Enter   |
     * |-----------------------------------------------------------|
     * |Shift   |   |   |   |   |   |  +|  -|End|PgD|Dow|Shift |   |
     * `-----------------------------------------------------------'
     *      |Gui |Alt  |Space                  |Alt  |Gui|
     *      `--------------------------------------------'
     */ 
    KEYMAP(PWR, F1,  F2,  F3,  F4,  F5,  F6,  F7,  F8,  F9,  F10, F11, F12, INS, DEL, \
           CAPS,TRNS,TRNS,TRNS,TRNS,TRNS,TRNS,TRNS,PSCR,SLCK,PAUS,UP,  TRNS,BSPC, \
           LCTL,VOLD,VOLU,MUTE,TRNS,TRNS,PAST,PSLS,HOME,PGUP,LEFT,RGHT,ENT, \
           LSFT,TRNS,TRNS,TRNS,TRNS,TRNS,PPLS,PMNS,END, PGDN,DOWN,RSFT,TRNS, \
                LGUI,LALT,          SPC,                RALT,RGUI),
    /* 2: Mousekey
     * ,-----------------------------------------------------------.
     * |Esc| F1| F2| F3| F4| F5| F6| F7| F8| F9|F10|F11|F12|Ins|Del|
     * |-----------------------------------------------------------|
     * |Tab  |   |   |   |   |   |MwL|MwD|MwU|MwR|   |   |   |Backs|
     * |-----------------------------------------------------------|
     * |Contro|   |   |   |   |   |McL|McD|McU|McR|   |   |Return  |
     * |-----------------------------------------------------------|
     * |Shift   |   |   |   |   |Mb3|Mb2|Mb1|Mb4|Mb5|   |Shift |   |
     * `-----------------------------------------------------------'
     *      |Gui |Alt  |Mb1                    |Alt  |   |
     *      `--------------------------------------------'
     * Mc: Mouse Cursor / Mb: Mouse Button / Mw: Mouse Wheel 
     */
    KEYMAP(ESC, F1,  F2,  F3,  F4,  F5,  F6,  F7,  F8,  F9,  F10, F11, F12, INS, DEL, \
           TAB, TRNS,TRNS,TRNS,TRNS,TRNS,WH_L,WH_D,WH_U,WH_R,TRNS,TRNS,TRNS,BSPC, \
           LCTL,TRNS,ACL0,ACL1,ACL2,TRNS,MS_L,MS_D,MS_U,MS_R,TRNS,QUOT,ENT, \
           LSFT,TRNS,TRNS,TRNS,TRNS,BTN3,BTN2,BTN1,BTN4,BTN5,SLSH,RSFT,TRNS, \
                LGUI,LALT,          BTN1,               RALT,TRNS),
};

static const uint16_t PROGMEM fn_actions[] = {
    ACTION_LAYER_MOMENTARY(1),                  // FN0
    ACTION_LAYER_TAP_KEY(2, KC_SCLN),           // FN1
    ACTION_LAYER_TOGGLE(2),                     // FN2
};

1. Keycode

See common/keycode.h or keycode table below for the detail. Keycode is internal 8bit code to indicate action performed on key in keymap. Keycode has KC_ prefixed symbol respectively. Most of keycodes like KC_A have simple action registers key to host on press and unregister on release, while some of other keycodes has some special actions like Fn keys, Media control keys, System control keys and Mousekeys.

In KEYMAP() macro you should omit prefix part KC_ of keycode to keep keymap compact. For example, just use A instead you place KC_A in KEYMAP(). Some keycodes has 4-letter short name in addition to descriptive name, you'll prefer short one in KEYMAP().

1.0 Other key

  • KC_NO for no action
  • KC_TRNS for layer transparency (See above)

1.1 Normal key

  • KC_A to KC_Z, KC_1 to KC_0 for alpha numeric key
  • KC_MINS, KC_EQL, KC_GRV, KC_RBRC, KC_LBRC, KC_COMM, KC_DOT, KC_BSLS, KC_SLSH, KC_SCLN, KC_QUOT
  • KC_ESC, KC_TAB, KC_SPC, KC_BSPC, KC_ENT, KC_DEL, KC_INS
  • KC_UP, KC_DOWN, KC_RGHT, KC_LEFT, KC_PGUP, KC_PGDN, KC_HOME, KC_END
  • KC_CAPS, KC_NLCK, KC_SLCK, KC_PSCR, KC_PAUS, KC_APP, KC_F1 to KC_F24
  • KC_P1 to KC_P0, KC_PDOT, KC_PCMM, KC_PSLS, KC_PAST, KC_PMNS, KC_PPLS, KC_PEQL, KC_PENT for keypad.

1.2 Modifier

There are 8 modifiers which has discrimination between left and right.

  • KC_LCTL and KC_RCTL for Control
  • KC_LSFT and KC_RSFT for Shift
  • KC_LALT and KC_RALT for Alt
  • KC_LGUI and KC_RGUI for Windows key or Command key in Mac

1.3 Mousekey

  • KC_MS_U, KC_MS_D, KC_MS_L, KC_MS_R for mouse cursor
  • KC_WH_U, KC_WH_D, KC_WH_L, KC_WH_R for mouse wheel
  • KC_BTN1, KC_BTN2, KC_BTN3, KC_BTN4, KC_BTN5 for mouse buttons

1.4 System & Media key

  • KC_PWR, KC_SLEP, KC_WAKE for Power, Sleep, Wake
  • KC_MUTE, KC_VOLU, KC_VOLD for audio volume control
  • KC_MNXT, KC_MPRV, KC_MSTP, KC_MPLY, KC_MSEL for media control
  • KC_MAIL, KC_CALC, KC_MYCM for application launch
  • KC_WSCH, KC_WHOM, KC_WBAK, KC_WFWD, KC_WSTP, KC_WREF, KC_WFAV for web browser operation

1.5 Fn key

KC_FNnn are keycodes for Fn key which not given any actions at the beginning unlike most of keycodes has its own inborn action. To use these keycodes in KEYMAP() you need to assign action you want at first. Action of Fn key is defined in fn_actions[] and its index of the array is identical with number part of KC_FNnn. Thus KC_FN0 keycode indicates the action defined in first element of the array. 32 Fn keys can be defined at most.

1.6 Keycode Table

See keycode table in doc/keycode.txt for description of keycodes.

In regard to implementation side most of keycodes are identical with [HID usage]HID_usage sent to host for real and some virtual keycodes are defined to support special actions. [HID_usage]: http://www.usb.org/developers/hidpage/Hut1_12v2.pdf

2. Action

See common/action_code.h. Action is a 16bit code and defines function to perform on events of a key like press, release, holding and tapping.

Most of keys just register 8bit scancode to host, but to support other complex features needs 16bit extended action codes internally. However, using 16bit action codes in keymap results in double size in memory compared to using just keycodes. To avoid this waste 8bit keycodes are used in KEYMAP() instead of action codes.

You can just use keycodes of Normal key, Modifier, Mousekey and System & Media key in keymap to indicate corresponding actions instead of using action codes. While to use other special actions you should use keycode of Fn key defined in fn_actions[].

2.1 Key Action

This is a simple action that registers scancodes(HID usage in fact) to host on press event of key and unregister on release.

Parameters

  • mods: { MOD_LCTL, MOD_LSFT, MOD_LALT, MOD_LGUI, MOD_RCTL, MOD_RSFT, MOD_RALT, MOD_RGUI }
  • key: keycode

2.1.1 Normal key and Modifier

This action usually won't be used expressly in keymap because you can just use keycodes in KEYMAP() instead.

You can define these actions on 'A' key and 'left shift' modifier with:

ACTION_KEY(KC_A)
ACTION_KEY(KC_LSFT)

2.1.2 Modified key

This action is comprised of strokes of modifiers and a key. Macro action is needed if you want more complex key strokes.

Say you want to assign a key to Shift + 1 to get character '!' or Alt + Tab to switch application windows.

ACTION_MODS_KEY(MOD_LSFT, KC_1)
ACTION_MODS_KEY(MOD_LALT, KC_TAB)

Or Alt,Shift + Tab can be defined. ACTION_MODS_KEY(mods, key) requires 4-bit modifier state and a keycode as arguments. See keycode.h for MOD_BIT() macro.

ACTION_MODS_KEY(MOD_LALT | MOD_LSFT, KC_TAB)

2.1.3 Multiple Modifiers

Registers multiple modifiers with pressing a key. To specify multiple modifiers use |.

ACTION_MODS(MOD_ALT | MOD_LSFT)

2.1.3 Modifier with Tap key(Dual role)

Works as a modifier key while holding, but registers a key on tap(press and release quickly).

ACTION_MODS_TAP_KEY(MOD_RCTL, KC_ENT)

2.2 Layer Action

These actions operate layers of keymap.

Parameters

You can specify a target layer of action and when the action is executed. Some actions take a bit value for bitwise operation.

  • layer: 0-31
  • on: { ON_PRESS | ON_RELEASE | ON_BOTH }
  • bits: 4-bit value and 1-bit mask bit

2.2.1 Default Layer

Default Layer is a layer which always is valid and referred to when actions is not defined on other overlay layers.

This sets Default Layer to given parameter layer and activate it.

ACTION_DEFAULT_LAYER_SET(layer)

2.2.2 Momentary

Turns on layer momentarily while holding, in other words it activates when key is pressed and deactivate when released.

ACTION_LAYER_MOMENTARY(layer)

2.2.3 Toggle Switch

Turns on layer with first type(press and release) and turns off with next.

ACTION_LAYER_TOGGLE(layer)

2.2.4 Momentary Switch with tap key

Turns on layer momentary while holding, but registers key on tap(press and release quickly).

ACTION_LAYER_TAP_KEY(layer, key)

2.2.5 Momentary Switch with tap toggle

Turns on layer momentary while holding and toggles it with serial taps.

ACTION_LAYER_TAP_TOGGLE(layer)

2.2.6 Invert state of layer

Inverts current state of layer. If the layer is on it becomes off with this action.

ACTION_LAYER_INVERT(layer, on)

2.2.7 Turn On layer

Turns on layer state.

ACTION_LAYER_ON(layer, on)

Turns on layer state on press and turns off on release.

ACTION_LAYER_ON_OFF(layer)

2.2.8 Turn Off layer

Turns off layer state.

ACTION_LAYER_OFF(layer, on)

Turns off layer state on press and activates on release.

ACTION_LAYER_OFF_ON(layer)

2.2.9 Set layer

Turn on layer only. layer_state = (1<<layer) [layer: 0-31]

ACTION_LAYER_SET(layer, on)

Turns on layer only and clear all layer on release..

ACTION_LAYER_SET_CLEAR(layer)

2.2.10 Bitwise operation

part indicates which part of 32bit layer state(0-7). bits is 5-bit value. on indicates when the action is executed.

ACTION_LAYER_BIT_AND(part, bits, on)
ACTION_LAYER_BIT_OR(part, bits, on)
ACTION_LAYER_BIT_XOR(part, bits, on)
ACTION_LAYER_BIT_SET(part, bits, on)

These actions works with parameters as following code.

uint8_t shift = part*4;
uint32_t mask = (bits&0x10) ? ~(0xf<<shift) : 0;
uint32_t layer_state = layer_state <bitop> ((bits<<shift)|mask);

Default Layer also has bitwise operations, they are executed when key is released.

ACTION_DEFAULT_LAYER_BIT_AND(part, bits)
ACTION_DEFAULT_LAYER_BIT_OR(part, bits)
ACTION_DEFAULT_LAYER_BIT_XOR(part, bits)
ACTION_DEFAULT_LAYER_BIT_SET(part, bits)

2.3 Macro action

TBD

Macro action indicates complex key strokes.

MACRO( D(LSHIFT), D(D), END )
MACRO( U(D), U(LSHIFT), END )
MACRO( I(255), T(H), T(E), T(L), T(L), W(255), T(O), END )

2.3.1 Macro Commands

  • MACRO()

  • MACRO_NONE

  • I() change interval of stroke.

  • D() press key

  • U() release key

  • T() type key(press and release)

  • W() wait

  • SM() store modifier state

  • RM() restore modifier state

  • CM() clear modifier state

  • END end mark

2.3.2 Examples

TBD

const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
    switch (id) {
        case HELLO:
            return (record->event.pressed ?
                    MACRO( I(0), T(H), T(E), T(L), T(L), W(255), T(O), END ) :
                    MACRO_NONE );
        case ALT_TAB:
            return (record->event.pressed ?
                    MACRO( D(LALT), D(TAB), END ) :
                    MACRO( U(TAB), END ));
    }
    return MACRO_NONE;
}

2.4 Function action

TBD

There are two type of action, normal Function and tappable Function. These actions call user defined function with id, opt, and key event information as arguments.

2.4.1 Function

To define normal Function action in keymap use this.

ACTION_FUNCTION(id, opt)

2.4.2 Function with tap

To define tappable Function action in keymap use this.

ACTION_FUNCTION_TAP(id, opt)

2.4.3 Implement user function

Function actions can be defined freely with C by user in callback function:

void keymap_call_function(keyrecord_t *event, uint8_t id, uint8_t opt)

This C function is called every time key is operated, argument id selects action to be performed and opt can be used for option. Function id can be 0-255 and opt can be 0-15.

keyrecord_t is comprised of key event and tap count. keyevent_t indicates which and when key is pressed or released. From tap_count you can know tap state, 0 means no tap. These information will be used in user function to decide how action of key is performed.

typedef struct {
    keyevent_t  event;
    uint8_t     tap_count;
} keyrecord_t;

typedef struct {
    key_t    key;
    bool     pressed;
    uint16_t time;
} keyevent_t;

typedef struct {
    uint8_t col;
    uint8_t row;
} key_t;

TODO: sample implementation See keyboard/hhkb/keymap.c for sample.

2.5 Backlight Action

These actions control the backlight.

2.5.1 Change backlight level

Increase backlight level.

ACTION_BACKLIGHT_INCREASE()

Decrease backlight level.

ACTION_BACKLIGHT_DECREASE()

Step through backlight levels.

ACTION_BACKLIGHT_STEP()

Turn a specific backlight level on or off.

ACTION_BACKLIGHT_LEVEL(1)

2.5.2 Turn on / off backlight

Turn the backlight on and off without changing level.

ACTION_BACKLIGHT_TOGGLE()

3. Layer switching Example

There are some ways to switch layer with 'Layer' actions.

3.1 Momentary switching

Momentary switching changes layer only while holding Fn key.

This action makes 'Layer 1' active(valid) on key press event and inactive on release event. Namely you can overlay a layer on lower layers or default layer temporarily with this action.

ACTION_LAYER_MOMENTARY(1)

Note that after switching on press the actions on destination layer(Layer 1) are performed. Thus you shall need to place an action to go back on destination layer, or you will be stuck in destination layer without way to get back. Usually you need to place same action or 'KC_TRNS` on destination layer to get back.

3.2 Toggle switching

Toggle switching performed after releasing a key. With this action you can keep staying on the destination layer until you type the key again to return.

This performs toggle switching action of 'Layer 2'.

ACTION_LAYER_TOGGLE(2)

3.3 Momentary switching with Tap key

These actions switch a layer only while holding a key but register the key on tap. Tap means to press and release a key quickly.

ACTION_LAYER_TAP_KEY(2, KC_SCLN)

With this you can place a layer switching action on normal key like ';' without losing its original key register function. This action allows you to have layer switching action without necessity of a dedicated key. It means you can have it even on home row of keyboard.

3.4 Momentary switching with Tap Toggle

This switches layer only while holding a key but toggle layer with several taps. Tap means to press and release key quickly.

ACTION_LAYER_TAP_TOGGLE(1)

Number of taps can be configured with TAPPING_TOGGLE in config.h, 5 by default.

3.5 Momentary switching with Modifiers

This registers modifier key(s) simultaneously with layer switching.

ACTION_LAYER_MODS(2, MOD_LSFT | MOD_LALT)

4. Tapping

Tapping is to press and release a key quickly. Tapping speed is determined with setting of TAPPING_TERM, which can be defined in config.h, 200ms by default.

4.1 Tap Key

This is a feature to assign normal key action and modifier including layer switching to just same one physical key. This is a kind of Dual role key. It works as modifier when holding the key but registers normal key when tapping.

Modifier with tap key:

ACTION_MODS_TAP_KEY(MOD_RSFT, KC_GRV)

Layer switching with tap key:

ACTION_LAYER_TAP_KEY(2, KC_SCLN)

4.2 Tap Toggle

This is a feature to assign both toggle layer and momentary switch layer action to just same one physical key. It works as momentary layer switch when holding a key but toggle switch with several taps.

ACTION_LAYER_TAP_TOGGLE(1)

4.3 Oneshot Modifier

This runs onetime effects which modify only on just one following key. It works as normal modifier key when holding down while oneshot modifier when tapping.

ACTION_MODS_ONESHOT(MOD_LSFT)

Say you want to type 'The', you have to push and hold Shift key before type 't' then release it before type 'h' and 'e', otherwise you'll get 'THe' or 'the' unintentionally. With Oneshot Modifier you can tap Shift then type 't', 'h' and 'e' normally, you don't need to holding Shift key properly here. This mean you can release Shift before 't' is pressed down.

Oneshot effect is cancel unless following key is pressed down within ONESHOT_TIMEOUT of config.h. No timeout when it is 0 or not defined.

4.4 Tap Toggle Mods

Similar to layer tap toggle, this works as a momentary modifier when holding, but toggles on with several taps. A single tap will 'unstick' the modifier again.

ACTION_MODS_TAP_TOGGLE(MOD_LSFT)

5. Legacy Keymap

This was used in prior version and still works due to legacy support code in common/keymap.c. Legacy keymap doesn't support many of features that new keymap offers. It is not recommended to use Legacy Keymap for new project.

To enable Legacy Keymap support define this macro in config.h.

#define USE_LEGACY_KEYMAP

Legacy Keymap uses two arrays fn_layer[] and fn_keycode[] to define Fn key. The index of arrays corresponds with postfix number of Fn key. Array fn_layer[] indicates destination layer to switch and fn_keycode[] has keycodes to send when tapping Fn key.

In following setting example, Fn0, Fn1 and Fn2 switch layer to 1, 2 and 2 respectively. Fn2 registers Space key when tapping while Fn0 and Fn1 doesn't send any key.

static const uint8_t PROGMEM fn_layer[] = {
    1,              // Fn0
    2,              // Fn1
    2,              // Fn2
};

static const uint8_t PROGMEM fn_keycode[] = {
    KC_NO,          // Fn0
    KC_NO,          // Fn1
    KC_SPC,         // Fn2
};

6. Terminology

TBD

keymap

is comprised of multiple layers.

layer

is matrix of keycodes.

key

is physical button on keyboard or logical switch on software.

keycode

is codes used on firmware.

action

is a function assigned on a key.

layer transparency

Using transparent keycode one layer can refer key definition on other lower layer.

layer precedence

Top layer has higher precedence than lower layers.

tapping

is to press and release a key quickly.

Fn key

is key which executes a special action like layer switching, mouse key, macro or etc.

dual role key

http://en.wikipedia.org/wiki/Modifier_key#Dual-role_keys