Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Scan/ISSILed/led_scan.c

1017 lines
24 KiB
C
Raw Normal View History

/* Copyright (C) 2014-2015 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/ScanLib.h>
// Project Includes
#include <cli.h>
#include <kll_defs.h>
#include <led.h>
#include <print.h>
#include <pixel.h>
// Interconnect module if compiled in
#if defined(ConnectEnabled_define)
#include <connect_scan.h>
#endif
// Local Includes
#include "i2c.h"
#include "led_scan.h"
// ----- Defines -----
// TODO Make this a kll define
// I2C transfers are more efficient if all 144 don't have to be updated
// (and most implementations don't use all the channels)
// Ergodox tested @ 83fps /w 38
// Whitefox tested @ 45fps /w 71
#define LED_BufferLength 144
#define LED_EnableBufferLength 18
#define LED_FrameBuffersMax 4
#define LED_TotalChannels (LED_BufferLength * ISSI_Chips_define)
// ISSI Addresses
// IS31FL3731 (max 4 channels per bus)
#if 1
#define ISSI_Ch1 0xE8
#define ISSI_Ch2 0xEA
#define ISSI_Ch3 0xEC
#define ISSI_Ch4 0xEE
// IS31FL3732 (max 16 channels per bus)
#else
#define ISSI_Ch1 0xB0
#define ISSI_Ch2 0xB2
#define ISSI_Ch3 0xB4
#define ISSI_Ch4 0xB6
#endif
// ----- Macros -----
#define LED_MaskDefine(ch) \
{ \
ISSI_Ch##ch, /* I2C address */ \
0x00, /* Starting register address */ \
{ ISSILedMask##ch##_define }, \
}
#define LED_BrightnessDefine(ch) \
{ \
ISSI_Ch##ch, /* I2C address */ \
0x24, /* Starting register address */ \
{ ISSILedBrightness##ch##_define }, \
}
// ----- Structs -----
typedef struct LED_Buffer {
uint16_t i2c_addr;
uint16_t reg_addr;
uint16_t buffer[LED_BufferLength];
} LED_Buffer;
typedef struct LED_EnableBuffer {
uint16_t i2c_addr;
uint16_t reg_addr;
uint16_t buffer[LED_EnableBufferLength];
} LED_EnableBuffer;
// ----- Function Declarations -----
// CLI Functions
void cliFunc_i2cSend ( char* args );
void cliFunc_ledCtrl ( char* args );
void cliFunc_ledReset ( char* args );
void cliFunc_ledSpeed ( char* args );
// ----- Variables -----
// Scan Module command dictionary
CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." );
CLIDict_Entry( ledCtrl, "Basic LED control. Args: <mode> <amount> [<index>]" );
CLIDict_Entry( ledReset, "Reset ISSI chips." );
CLIDict_Entry( ledSpeed, "ISSI frame rate 0-63, 1 is fastest. f - display fps" );
CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = {
CLIDict_Item( i2cSend ),
CLIDict_Item( ledCtrl ),
CLIDict_Item( ledReset ),
CLIDict_Item( ledSpeed ),
{ 0, 0, 0 } // Null entry for dictionary end
};
volatile LED_Buffer LED_pageBuffer[ ISSI_Chips_define ];
uint8_t LED_FrameBuffersReady; // Starts at maximum, reset on interrupt from ISSI
volatile uint8_t LED_FrameBufferReset; // INTB interrupt received, reset available buffer count when ready
uint8_t LED_FrameBufferPage; // Current page of the buffer
uint8_t LED_FrameBufferStart; // Whether or not a start signal can be sent
uint8_t LED_displayFPS; // Display fps to cli
// Enable mask and default brightness for ISSI chip channel
const LED_EnableBuffer LED_ledEnableMask[ISSI_Chips_define] = {
LED_MaskDefine( 1 ),
#if ISSI_Chips_define >= 2
LED_MaskDefine( 2 ),
#endif
#if ISSI_Chips_define >= 3
LED_MaskDefine( 3 ),
#endif
#if ISSI_Chips_define >= 4
LED_MaskDefine( 4 ),
#endif
};
// Default LED brightness
const LED_Buffer LED_defaultBrightness[ISSI_Chips_define] = {
LED_BrightnessDefine( 1 ),
#if ISSI_Chips_define >= 2
LED_BrightnessDefine( 2 ),
#endif
#if ISSI_Chips_define >= 3
LED_BrightnessDefine( 3 ),
#endif
#if ISSI_Chips_define >= 4
LED_BrightnessDefine( 4 ),
#endif
};
#if ISSI_Chips_define >= 5
#error "Invalid number of ISSI Chips"
#endif
// ----- Interrupt Functions -----
void portb_isr()
{
// Check for ISSI INTB IRQ
if ( PORTB_ISFR & (1 << 17) )
{
// Set frame buffer replenish condition
LED_FrameBufferReset = 1;
// Clear IRQ
PORTB_ISFR |= (1 << 17);
}
}
// ----- Functions -----
void LED_zeroPages( uint8_t addr, uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg )
{
// Clear Page
// Max length of a page + chip id + reg start
uint16_t clearPage[2 + 0xB4] = { 0 };
clearPage[0] = addr;
clearPage[1] = startReg;
// Iterate through given pages, zero'ing out the given register regions
for ( uint8_t page = startPage; page < startPage + numPages; page++ )
{
// Page Setup
uint16_t pageSetup[] = { addr, 0xFD, page };
// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
// Zero out page
while ( i2c_send( clearPage, 2 + endReg - startReg ) == -1 )
delay(1);
}
// Wait until finished zero'ing
while ( i2c_busy() )
delay(1);
}
void LED_sendPage( uint8_t addr, uint16_t *buffer, uint32_t len, uint8_t page )
{
/*
info_msg("I2C Send Page Addr: ");
printHex( addr );
print(" Len: ");
printHex( len );
print(" Page: ");
printHex( page );
print( NL );
*/
// Page Setup
uint16_t pageSetup[] = { addr, 0xFD, page };
// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
// Write page to I2C Tx Buffer
while ( i2c_send( buffer, len ) == -1 )
delay(1);
}
// Write register on all ISSI chips
// Prepare pages first, then attempt write register with a minimal delay between chips
void LED_syncReg( uint8_t reg, uint8_t val, uint8_t page )
{
uint16_t pageSetup[] = { 0, 0xFD, page };
// Setup each of the pages
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
pageSetup[0] = LED_pageBuffer[ ch ].i2c_addr;
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
}
// Reg Write Setup
uint16_t writeData[] = { 0, reg, val };
// Write to all the registers
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
writeData[0] = LED_pageBuffer[ ch ].i2c_addr;
// Delay very little to help with synchronization
while ( i2c_send( writeData, sizeof( writeData ) / 2 ) == -1 )
delayMicroseconds(10);
}
// Delay until written
while ( i2c_busy() )
delay(1);
}
// Write address
void LED_writeReg( uint8_t addr, uint8_t reg, uint8_t val, uint8_t page )
{
// Page Setup
uint16_t pageSetup[] = { addr, 0xFD, page };
// Reg Write Setup
uint16_t writeData[] = { addr, reg, val };
// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
// Write register
while ( i2c_send( writeData, sizeof( writeData ) / 2 ) == -1 )
delay(1);
// Delay until written
while ( i2c_busy() )
delay(1);
}
// Read address
// TODO Not working?
uint8_t LED_readReg( uint8_t addr, uint8_t reg, uint8_t page )
{
// Software shutdown must be enabled to read registers
LED_writeReg( addr, 0x0A, 0x00, 0x0B );
// Page Setup
uint16_t pageSetup[] = { addr, 0xFD, page };
// Setup page
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
// Register Setup
uint16_t regSetup[] = { addr, reg };
// Configure register
while ( i2c_send( regSetup, sizeof( regSetup ) / 2 ) == -1 )
delay(1);
// Register Read Command
uint16_t regReadCmd[] = { addr | 0x1, I2C_READ };
uint8_t recv_data;
// Request single register byte
while ( i2c_read( regReadCmd, sizeof( regReadCmd ) / 2, &recv_data ) == -1 )
delay(1);
// Disable software shutdown
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
return recv_data;
}
void LED_reset()
{
// Reset frame buffer used count
LED_FrameBuffersReady = LED_FrameBuffersMax;
// Starting page for the buffers
LED_FrameBufferPage = 4;
// Initially do not allow autoplay to restart
LED_FrameBufferStart = 0;
// Disable FPS by default
LED_displayFPS = 0;
// Clear LED Pages
// Enable LEDs based upon mask
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_zeroPages( addr, 0x00, 8, 0x00, 0xB4 ); // LED Registers
// For each page
for ( uint8_t pg = 0; pg < LED_FrameBuffersMax * 2; pg++ )
{
LED_sendPage(
addr,
(uint16_t*)&LED_ledEnableMask[ ch ],
sizeof( LED_EnableBuffer ) / 2,
pg
);
}
}
// Setup ISSI auto frame play, but do not start yet
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
// CNS 1 loop, FNS 4 frames - 0x14
LED_writeReg( addr, 0x02, 0x14, 0x0B );
// Default refresh speed - TxA
// T is typically 11ms
// A is 1 to 64 (where 0 is 64)
LED_writeReg( addr, 0x03, ISSI_AnimationSpeed_define, 0x0B );
// Set MODE to Auto Frame Play
LED_writeReg( addr, 0x00, 0x08, 0x0B );
}
// Disable Software shutdown of ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_writeReg( addr, 0x0A, 0x01, 0x0B );
}
}
// Setup
inline void LED_setup()
{
// Register Scan CLI dictionary
CLI_registerDictionary( ledCLIDict, ledCLIDictName );
// Initialize I2C
i2c_setup();
// Setup LED_pageBuffer addresses and brightness section
LED_pageBuffer[0].i2c_addr = ISSI_Ch1;
LED_pageBuffer[0].reg_addr = 0x24;
#if ISSI_Chips_define >= 2
LED_pageBuffer[1].i2c_addr = ISSI_Ch2;
LED_pageBuffer[1].reg_addr = 0x24;
#endif
#if ISSI_Chips_define >= 3
LED_pageBuffer[2].i2c_addr = ISSI_Ch3;
LED_pageBuffer[2].reg_addr = 0x24;
#endif
#if ISSI_Chips_define >= 4
LED_pageBuffer[3].i2c_addr = ISSI_Ch4;
LED_pageBuffer[3].reg_addr = 0x24;
#endif
// Enable Hardware shutdown (pull low)
GPIOB_PDDR |= (1<<16);
PORTB_PCR16 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
GPIOB_PCOR |= (1<<16);
// Zero out Frame Registers
// This needs to be done before disabling the hardware shutdown (or the leds will do undefined things)
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_zeroPages( addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers
}
// Disable Hardware shutdown of ISSI chip (pull high)
GPIOB_PSOR |= (1<<16);
// Prepare pin to read INTB interrupt of ISSI chip (Active Low)
// Enable interrupt to detect falling edge
// Uses external pullup resistor
GPIOB_PDDR |= ~(1<<17);
PORTB_PCR17 = PORT_PCR_IRQC(0xA) | PORT_PCR_PFE | PORT_PCR_MUX(1);
LED_FrameBufferReset = 0; // Clear frame buffer reset condition for ISSI
// Enable PORTB interrupt
NVIC_ENABLE_IRQ( IRQ_PORTB );
// Reset LED sequencing
LED_reset();
}
// LED Linked Send
// Call-back for i2c write when updating led display
uint8_t LED_chipSend;
void LED_linkedSend()
{
// Check if we've updated all the ISSI chips for this frame
if ( LED_chipSend >= ISSI_Chips_define )
{
// Increment the buffer page
// And reset if necessary
if ( ++LED_FrameBufferPage >= LED_FrameBuffersMax * 2 )
{
LED_FrameBufferPage = 0;
}
// Now ready to update the frame buffer
Pixel_FrameState = FrameState_Update;
return;
}
// Update ISSI Frame State
Pixel_FrameState = FrameState_Sending;
// Debug
/*
dbug_msg("Linked Send: chip(");
printHex( LED_chipSend );
print(") frame(");
printHex( LED_FrameBufferPage );
print(") addr(");
printHex( LED_pageBuffer[0].i2c_addr );
print(") reg(");
printHex( LED_pageBuffer[0].reg_addr );
print(") len(");
printHex( sizeof( LED_Buffer ) / 2 );
print(") data[]" NL "(");
for ( uint8_t c = 0; c < 9; c++ )
//for ( uint8_t c = 0; c < sizeof( LED_Buffer ) / 2 - 2; c++ )
{
printHex( LED_pageBuffer[0].buffer[c] );
print(" ");
}
print(")" NL);
*/
// Send, and recursively call this function when finished
while ( i2c_send_sequence(
(uint16_t*)&LED_pageBuffer[ LED_chipSend ],
sizeof( LED_Buffer ) / 2,
0,
LED_linkedSend,
0
) == -1 )
delay(1);
// Increment chip position
LED_chipSend++;
}
// LED State processing loop
uint32_t LED_timePrev = 0;
inline void LED_scan()
{
// Check to see if frame buffers are ready to replenish
if ( LED_FrameBufferReset )
{
LED_FrameBufferReset = 0;
// Delay, in order to synchronize chips
LED_FrameBufferStart = 1;
// FPS Display
if ( LED_displayFPS )
{
dbug_msg("4frames/");
printInt32( systick_millis_count - LED_timePrev );
LED_timePrev = systick_millis_count;
print( "ms" NL );
}
}
// Make sure there are buffers available
if ( LED_FrameBuffersReady == 0 )
{
// Only start if we haven't already
// And if we've finished updating the buffers
if ( !LED_FrameBufferStart || Pixel_FrameState == FrameState_Sending )
return;
// Start Auto Frame Play on either frame 1 or 5
uint8_t frame = LED_FrameBufferPage == 0 ? 4 : 0;
LED_syncReg( 0x00, 0x08 | frame, 0x0B );
LED_FrameBufferStart = 0;
LED_FrameBuffersReady = LED_FrameBuffersMax;
return;
}
/*
else
{
dbug_msg(":/ - Start(");
printHex( LED_FrameBufferStart );
print(") BuffersReady(");
printHex( LED_FrameBuffersReady );
print(") State(");
printHex( Pixel_FrameState );
print(")"NL);
}
*/
// Only send frame to ISSI chip if buffers are ready
if ( Pixel_FrameState != FrameState_Ready )
return;
LED_FrameBuffersReady--;
// Set the page of all the ISSI chips
// This way we can easily link the buffers to send the brightnesses in the background
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
// Page Setup
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
uint16_t pageSetup[] = { addr, 0xFD, LED_FrameBufferPage };
// Send each update
while ( i2c_send( pageSetup, sizeof( pageSetup ) / 2 ) == -1 )
delay(1);
}
// Send current set of buffers
// Uses interrupts to send to all the ISSI chips
// Pixel_FrameState will be updated when complete
LED_chipSend = 0; // Start with chip 0
LED_linkedSend();
}
// ----- Capabilities -----
// Basic LED Control Capability
typedef enum LedControlMode {
// Single LED Modes
LedControlMode_brightness_decrease,
LedControlMode_brightness_increase,
LedControlMode_brightness_set,
// Set all LEDs (index argument not required)
LedControlMode_brightness_decrease_all,
LedControlMode_brightness_increase_all,
LedControlMode_brightness_set_all,
} LedControlMode;
typedef struct LedControl {
LedControlMode mode; // XXX Make sure to adjust the .kll capability if this variable is larger than 8 bits
uint8_t amount;
uint16_t index;
} LedControl;
void LED_control( LedControl *control )
{
// Configure based upon the given mode
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
// TODO Perhaps do gamma adjustment?
switch ( control->mode )
{
case LedControlMode_brightness_decrease:
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ control->index ] -= control->amount;
break;
case LedControlMode_brightness_increase:
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ control->index ] += control->amount;
break;
case LedControlMode_brightness_set:
LED_pageBuffer[ ch ].buffer[ control->index ] = control->amount;
break;
case LedControlMode_brightness_decrease_all:
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
{
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ channel ] -= control->amount;
}
break;
case LedControlMode_brightness_increase_all:
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
{
// Don't worry about rolling over, the cycle is quick
LED_pageBuffer[ ch ].buffer[ channel ] += control->amount;
}
break;
case LedControlMode_brightness_set_all:
for ( uint8_t channel = 0; channel < LED_TotalChannels; channel++ )
{
LED_pageBuffer[ ch ].buffer[ channel ] = control->amount;
}
break;
}
}
// Sync LED buffer with ISSI chip buffer
// TODO Support multiple frames
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_sendPage( LED_pageBuffer[ ch ].i2c_addr, (uint16_t*)&LED_pageBuffer[ ch ], sizeof( LED_Buffer ) / 2, 0 );
}
}
uint8_t LED_control_timer = 0;
void LED_control_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("LED_control_capability(mode,amount,index)");
return;
}
// Only use capability on press
// TODO Analog
if ( stateType == 0x00 && state == 0x03 ) // Not on release
return;
// XXX
// ISSI Chip locks up if we spam updates too quickly (might be an I2C bug on this side too -HaaTa)
// Make sure we only send an update every 30 milliseconds at most
// It may be possible to optimize speed even further, but will likely require serious time with a logic analyzer
uint8_t currentTime = (uint8_t)systick_millis_count;
int8_t compare = (int8_t)(currentTime - LED_control_timer) & 0x7F;
if ( compare < 30 )
{
return;
}
LED_control_timer = currentTime;
// Set the input structure
LedControl *control = (LedControl*)args;
// Interconnect broadcasting
#if defined(ConnectEnabled_define)
uint8_t send_packet = 0;
uint8_t ignore_node = 0;
// By default send to the *next* node, which will determine where to go next
extern uint8_t Connect_id; // connect_scan.c
uint8_t addr = Connect_id + 1;
switch ( control->mode )
{
// Calculate the led address to send
// If greater than the Total hannels
// Set address - Total channels
// Otherwise, ignore
case LedControlMode_brightness_decrease:
case LedControlMode_brightness_increase:
case LedControlMode_brightness_set:
// Ignore if led is on this node
if ( control->index < LED_TotalChannels )
break;
// Calculate new led index
control->index -= LED_TotalChannels;
ignore_node = 1;
send_packet = 1;
break;
// Broadcast to all nodes
// XXX Do not set broadcasting address
// Will send command twice
case LedControlMode_brightness_decrease_all:
case LedControlMode_brightness_increase_all:
case LedControlMode_brightness_set_all:
send_packet = 1;
break;
}
// Only send interconnect remote capability packet if necessary
if ( send_packet )
{
// generatedKeymap.h
extern const Capability CapabilitiesList[];
// Broadcast layerStackExact remote capability (0xFF is the broadcast id)
Connect_send_RemoteCapability(
addr,
LED_control_capability_index,
state,
stateType,
CapabilitiesList[ LED_control_capability_index ].argCount,
args
);
}
// If there is nothing to do on this node, ignore
if ( ignore_node )
return;
#endif
// Modify led state of this node
LED_control( control );
}
// ----- CLI Command Functions -----
// TODO Currently not working correctly
void cliFunc_i2cSend( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Buffer used after interpretting the args, will be sent to I2C functions
// NOTE: Limited to 8 bytes currently (can be increased if necessary
#define i2cSend_BuffLenMax 8
uint16_t buffer[ i2cSend_BuffLenMax ];
uint8_t bufferLen = 0;
// No \r\n by default after the command is entered
print( NL );
info_msg("Sending: ");
// Parse args until a \0 is found
while ( bufferLen < i2cSend_BuffLenMax )
{
curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// If | is found, end sequence and start new one
if ( *arg1Ptr == '|' )
{
print("| ");
i2c_send( buffer, bufferLen );
bufferLen = 0;
continue;
}
// Interpret the argument
buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr );
// Print out the arg
dPrint( arg1Ptr );
print(" ");
}
print( NL );
i2c_send( buffer, bufferLen );
}
/*
void cliFunc_ledWPage( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// First specify the write address
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t addr = numToInt( arg1Ptr );
// Next process page and starting address
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t page[] = { addr, 0xFD, numToInt( arg1Ptr ) };
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
uint8_t data[] = { addr, numToInt( arg1Ptr ), 0 };
// Set the register page
while ( I2C_Send( page, sizeof( page ), 0 ) == 0 )
delay(1);
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
data[2] = numToInt( arg1Ptr );
// Write register location and data to I2C
while ( I2C_Send( data, sizeof( data ), 0 ) == 0 )
delay(1);
// Increment address
data[1]++;
}
}
*/
void cliFunc_ledReset( char* args )
{
print( NL ); // No \r\n by default after the command is entered
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
LED_zeroPages( LED_ledEnableMask[ ch ].i2c_addr, 0x0B, 1, 0x00, 0x0C ); // Control Registers
}
// Clear buffers
for ( uint8_t buf = 0; buf < ISSI_Chips_define; buf++ )
{
memset( (void*)LED_pageBuffer[ buf ].buffer, 0, LED_BufferLength * 2 );
}
LED_reset();
}
void cliFunc_ledSpeed( char* args )
{
print( NL ); // No \r\n by default after the command is entered
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
uint8_t speed = ISSI_AnimationSpeed_define;
// Process speed argument if given
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Check if f argument was given
switch ( *arg1Ptr )
{
case 'f':
case 'F':
info_msg("FPS Toggle");
LED_displayFPS = !LED_displayFPS;
return;
}
// Stop processing args if no more are found
if ( *arg1Ptr != '\0' )
{
speed = numToInt( arg1Ptr );
}
// Default to default speed
else
{
info_msg("Setting default speed: ");
printInt8( speed );
}
// Set refresh speed per ISSI chip
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
// Default refresh speed - TxA
// T is typically 11ms
// A is 1 to 64 (where 0 is 64)
LED_writeReg( addr, 0x03, speed, 0x0B );
}
}
void cliFunc_ledCtrl( char* args )
{
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
LedControl control;
// First process mode
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
control.mode = numToInt( arg1Ptr );
// Next process amount
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
return;
control.amount = numToInt( arg1Ptr );
// Finally process led index, if it exists
// Default to 0
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
control.index = *arg1Ptr == '\0' ? 0 : numToInt( arg1Ptr );
// Process request
LED_control( &control );
}
void cliFunc_ledNFrame( char* args )
{
// TODO REMOVEME
LED_FrameBufferStart = 1;
return;
/*
LED_FrameBufferReset = 0;
LED_FrameBuffersReady = LED_FrameBuffersMax;
LED_FrameBufferStart = 1;
*/
//LED_FrameBuffersReady++;
//LED_FrameBufferStart = 1;
//uint8_t addr = LED_pageBuffer[ 0 ].i2c_addr;
//LED_writeReg( addr, 0x00, 0x08, 0x0B );
//LED_FrameBuffersReady--;
// Iterate over available buffers
// Each pass can only send one buffer (per chip)
for ( uint8_t ch = 0; ch < ISSI_Chips_define; ch++ )
{
// XXX It is more efficient to only send positions that are used
// However, this may actually have more addressing overhead
// For simplicity, just sending the full 144 positions per ISSI chip
uint8_t addr = LED_pageBuffer[ ch ].i2c_addr;
LED_sendPage(
addr,
(uint16_t*)&LED_pageBuffer[ ch ],
sizeof( LED_Buffer ) / 2,
LED_FrameBufferPage
);
}
// Increment the buffer page
// And reset if necessary
if ( ++LED_FrameBufferPage >= LED_FrameBuffersMax * 2 )
{
LED_FrameBufferPage = 0;
}
}