Archived
1
0
This repo is archived. You can view files and clone it, but cannot push or open issues or pull requests.
controller/Macro/PartialMap/macro.c

1420 lines
38 KiB
C
Raw Normal View History

/* Copyright (C) 2014-2016 by Jacob Alexander
*
* This file is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file. If not, see <http://www.gnu.org/licenses/>.
*/
// ----- Includes -----
// Compiler Includes
#include <Lib/MacroLib.h>
// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
#include <scan_loop.h>
// Keymaps
#include "usb_hid.h"
#include <generatedKeymap.h> // Generated using kll at compile time, in build directory
// Connect Includes
#if defined(ConnectEnabled_define)
#include <connect_scan.h>
#endif
// Local Includes
#include "trigger.h"
#include "result.h"
#include "macro.h"
// ----- Function Declarations -----
void cliFunc_capList ( char* args );
void cliFunc_capSelect ( char* args );
void cliFunc_keyHold ( char* args );
void cliFunc_keyPress ( char* args );
void cliFunc_keyRelease( char* args );
void cliFunc_layerDebug( char* args );
void cliFunc_layerList ( char* args );
void cliFunc_layerState( char* args );
void cliFunc_macroDebug( char* args );
void cliFunc_macroList ( char* args );
void cliFunc_macroProc ( char* args );
void cliFunc_macroShow ( char* args );
void cliFunc_macroStep ( char* args );
// ----- Variables -----
// Macro Module command dictionary
CLIDict_Entry( capList, "Prints an indexed list of all non USB keycode capabilities." );
CLIDict_Entry( capSelect, "Triggers the specified capabilities. First two args are state and stateType." NL "\t\t\033[35mK11\033[0m Keyboard Capability 0x0B" );
CLIDict_Entry( keyHold, "Send key-hold events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" );
CLIDict_Entry( keyPress, "Send key-press events to the macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" );
CLIDict_Entry( keyRelease, "Send key-release event to macro module. Duplicates have undefined behaviour." NL "\t\t\033[35mS10\033[0m Scancode 0x0A" );
CLIDict_Entry( layerDebug, "Layer debug mode. Shows layer stack and any changes." );
CLIDict_Entry( layerList, "List available layers." );
CLIDict_Entry( layerState, "Modify specified indexed layer state <layer> <state byte>." NL "\t\t\033[35mL2\033[0m Indexed Layer 0x02" NL "\t\t0 Off, 1 Shift, 2 Latch, 4 Lock States" );
CLIDict_Entry( macroDebug, "Disables/Enables sending USB keycodes to the Output Module and prints U/K codes." );
CLIDict_Entry( macroList, "List the defined trigger and result macros." );
CLIDict_Entry( macroProc, "Pause/Resume macro processing." );
CLIDict_Entry( macroShow, "Show the macro corresponding to the given index." NL "\t\t\033[35mT16\033[0m Indexed Trigger Macro 0x10, \033[35mR12\033[0m Indexed Result Macro 0x0C" );
CLIDict_Entry( macroStep, "Do N macro processing steps. Defaults to 1." );
CLIDict_Def( macroCLIDict, "Macro Module Commands" ) = {
CLIDict_Item( capList ),
CLIDict_Item( capSelect ),
CLIDict_Item( keyHold ),
CLIDict_Item( keyPress ),
CLIDict_Item( keyRelease ),
CLIDict_Item( layerDebug ),
CLIDict_Item( layerList ),
CLIDict_Item( layerState ),
CLIDict_Item( macroDebug ),
CLIDict_Item( macroList ),
CLIDict_Item( macroProc ),
CLIDict_Item( macroShow ),
CLIDict_Item( macroStep ),
{ 0, 0, 0 } // Null entry for dictionary end
};
// Layer debug flag - If set, displays any changes to layers and the full layer stack on change
uint8_t layerDebugMode = 0;
// Macro debug flag - If set, clears the USB Buffers after signalling processing completion
uint8_t macroDebugMode = 0;
// Macro pause flag - If set, the macro module pauses processing, unless unset, or the step counter is non-zero
uint8_t macroPauseMode = 0;
// Macro step counter - If non-zero, the step counter counts down every time the macro module does one processing loop
uint16_t macroStepCounter = 0;
// Key Trigger List Buffer and Layer Cache
// The layer cache is set on press only, hold and release events refer to the value set on press
TriggerGuide macroTriggerListBuffer[ MaxScanCode ];
var_uint_t macroTriggerListBufferSize = 0;
var_uint_t macroTriggerListLayerCache[ MaxScanCode ];
// Layer Index Stack
// * When modifying layer state and the state is non-0x0, the stack must be adjusted
index_uint_t macroLayerIndexStack[ LayerNum + 1 ] = { 0 };
index_uint_t macroLayerIndexStackSize = 0;
// TODO REMOVE when dependency no longer exists
extern index_uint_t macroResultMacroPendingList[];
extern index_uint_t macroResultMacroPendingListSize;
extern index_uint_t macroTriggerMacroPendingList[];
extern index_uint_t macroTriggerMacroPendingListSize;
// Interconnect ScanCode Cache
#if defined(ConnectEnabled_define) || defined(PressReleaseCache_define)
// TODO This can be shrunk by the size of the max node 0 ScanCode
TriggerGuide macroInterconnectCache[ MaxScanCode ];
uint8_t macroInterconnectCacheSize = 0;
#endif
// Key blocking buffer
uint8_t macroHidBlockList[ Macro_maxBlockCount_define ];
uint8_t macroHidBlockListSize;
// ----- Capabilities -----
// Sets the given layer with the specified layerState
void Macro_layerState( uint8_t state, uint8_t stateType, uint16_t layer, uint8_t layerState )
{
// Ignore if layer does not exist or trying to manipulate layer 0/Default layer
if ( layer >= LayerNum || layer == 0 )
return;
// Is layer in the LayerIndexStack?
uint8_t inLayerIndexStack = 0;
uint16_t stackItem = 0;
while ( stackItem < macroLayerIndexStackSize )
{
// Flag if layer is already in the LayerIndexStack
if ( macroLayerIndexStack[ stackItem ] == layer )
{
inLayerIndexStack = 1;
break;
}
// Increment to next item
stackItem++;
}
// Toggle Layer State Byte
if ( LayerState[ layer ] & layerState )
{
// Unset
LayerState[ layer ] &= ~layerState;
}
else
{
// Set
LayerState[ layer ] |= layerState;
}
// If the layer was not in the LayerIndexStack add it
if ( !inLayerIndexStack )
{
macroLayerIndexStack[ macroLayerIndexStackSize++ ] = layer;
}
// If the layer is in the LayerIndexStack and the state is 0x00, remove
if ( LayerState[ layer ] == 0x00 && inLayerIndexStack )
{
// Remove the layer from the LayerIndexStack
// Using the already positioned stackItem variable from the loop above
while ( stackItem < macroLayerIndexStackSize )
{
macroLayerIndexStack[ stackItem ] = macroLayerIndexStack[ stackItem + 1 ];
stackItem++;
}
// Reduce LayerIndexStack size
macroLayerIndexStackSize--;
}
// Layer Debug Mode
if ( layerDebugMode )
{
dbug_msg("Layer ");
// Iterate over each of the layers displaying the state as a hex value
for ( index_uint_t index = 0; index < LayerNum; index++ )
{
printHex_op( LayerState[ index ], 0 );
}
// Always show the default layer (it's always 0)
print(" 0");
// Iterate over the layer stack starting from the bottom of the stack
for ( index_uint_t index = macroLayerIndexStackSize; index > 0; index-- )
{
print(":");
printHex_op( macroLayerIndexStack[ index - 1 ], 0 );
}
print( NL );
}
}
// Modifies the specified Layer control byte
// Argument #1: Layer Index -> uint16_t
// Argument #2: Layer State -> uint8_t
void Macro_layerState_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Macro_layerState(layerIndex,layerState)");
return;
}
// Only use capability on press or release
// TODO Analog
// XXX This may cause issues, might be better to implement state table here to decide -HaaTa
if ( stateType == 0x00 && state == 0x02 ) // Hold condition
return;
// Get layer index from arguments
// Cast pointer to uint8_t to uint16_t then access that memory location
uint16_t layer = *(uint16_t*)(&args[0]);
// Get layer toggle byte
uint8_t layerState = args[ sizeof(uint16_t) ];
Macro_layerState( state, stateType, layer, layerState );
}
// Latches given layer
// Argument #1: Layer Index -> uint16_t
void Macro_layerLatch_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Macro_layerLatch(layerIndex)");
return;
}
// Only use capability on press
// TODO Analog
if ( stateType == 0x00 && state != 0x03 ) // Only on release
return;
// Get layer index from arguments
// Cast pointer to uint8_t to uint16_t then access that memory location
uint16_t layer = *(uint16_t*)(&args[0]);
Macro_layerState( state, stateType, layer, 0x02 );
}
// Locks given layer
// Argument #1: Layer Index -> uint16_t
void Macro_layerLock_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Macro_layerLock(layerIndex)");
return;
}
// Only use capability on press
// TODO Analog
// XXX Could also be on release, but that's sorta dumb -HaaTa
if ( stateType == 0x00 && state != 0x01 ) // All normal key conditions except press
return;
// Get layer index from arguments
// Cast pointer to uint8_t to uint16_t then access that memory location
uint16_t layer = *(uint16_t*)(&args[0]);
Macro_layerState( state, stateType, layer, 0x04 );
}
// Shifts given layer
// Argument #1: Layer Index -> uint16_t
void Macro_layerShift_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Macro_layerShift(layerIndex)");
return;
}
// Only use capability on press or release
// TODO Analog
if ( stateType == 0x00 && ( state == 0x00 || state == 0x02 ) ) // Only pass press or release conditions
return;
// Get layer index from arguments
// Cast pointer to uint8_t to uint16_t then access that memory location
uint16_t layer = *(uint16_t*)(&args[0]);
Macro_layerState( state, stateType, layer, 0x01 );
}
// Rotate layer to next/previous
// Uses state variable to keep track of the current layer position
// Layers are still evaluated using the layer stack
uint16_t Macro_rotationLayer;
void Macro_layerRotate_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Macro_layerRotate(previous)");
return;
}
// Only use capability on press
// TODO Analog
// XXX Could also be on release, but that's sorta dumb -HaaTa
if ( stateType == 0x00 && state != 0x01 ) // All normal key conditions except press
return;
// Unset previous rotation layer if not 0
if ( Macro_rotationLayer != 0 )
{
Macro_layerState( state, stateType, Macro_rotationLayer, 0x04 );
}
// Get direction of rotation, 0, next, non-zero previous
uint8_t direction = *args;
// Next
if ( !direction )
{
Macro_rotationLayer++;
// Invalid layer
if ( Macro_rotationLayer >= LayerNum )
Macro_rotationLayer = 0;
}
// Previous
else
{
Macro_rotationLayer--;
// Layer wrap
if ( Macro_rotationLayer >= LayerNum )
Macro_rotationLayer = LayerNum - 1;
}
// Toggle the computed layer rotation
Macro_layerState( state, stateType, Macro_rotationLayer, 0x04 );
}
// Block USB Key
// During the next processing cycle, queue up a key to be ignored
// e.g. If Shift is assigned to both Shift and Layer 1
// Then if the 1 key on Layer 1 is assigned 2
// Block the Shift key so a USB 2 can be sent via the Output channel
// This works by having a queue of keys to "unset" if they are triggered during the next processing loop
void Macro_blockUSBKey_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
// Display capability name
if ( stateType == 0xFF && state == 0xFF )
{
print("Macro_blockUSBKey(usbCode)");
return;
}
// Get usb key from arguments
// Access argument directly as it's already uint8_t
uint8_t usbCode = args[0];
// Add to the hid block list
if ( macroHidBlockListSize < Macro_maxBlockCount_define )
{
macroHidBlockList[ macroHidBlockListSize++ ] = usbCode;
}
else
{
warn_print("USB Key Block buffer is full!: ");
printHex( usbCode );
print( NL );
}
}
// ----- Functions -----
// Looks up the trigger list for the given scan code (from the active layer)
// NOTE: Calling function must handle the NULL pointer case
nat_ptr_t *Macro_layerLookup( TriggerGuide *guide, uint8_t latch_expire )
2014-06-14 18:00:29 +00:00
{
uint8_t scanCode = guide->scanCode;
// TODO Analog
// If a normal key, and not pressed, do a layer cache lookup
if ( guide->type == 0x00 && guide->state != 0x01 )
{
// Cached layer
var_uint_t cachedLayer = macroTriggerListLayerCache[ scanCode ];
// Lookup map, then layer
nat_ptr_t **map = (nat_ptr_t**)LayerIndex[ cachedLayer ].triggerMap;
const Layer *layer = &LayerIndex[ cachedLayer ];
// Cache trigger list before attempting to expire latch
nat_ptr_t *trigger_list = map[ scanCode - layer->first ];
// Check if latch has been pressed for this layer
uint8_t latch = LayerState[ cachedLayer ] & 0x02;
if ( latch && latch_expire )
{
Macro_layerState( 0, 0, cachedLayer, 0x02 );
#if defined(ConnectEnabled_define) && defined(LCDEnabled_define)
// Evaluate the layerStack capability if available (LCD + Interconnect)
extern void LCD_layerStack_capability( uint8_t state, uint8_t stateType, uint8_t *args );
LCD_layerStack_capability( 0, 0, 0 );
#endif
}
return trigger_list;
}
// If no trigger macro is defined at the given layer, fallthrough to the next layer
for ( uint16_t layerIndex = macroLayerIndexStackSize; layerIndex != 0xFFFF; layerIndex-- )
{
// Lookup Layer
const Layer *layer = &LayerIndex[ macroLayerIndexStack[ layerIndex ] ];
// Check if latch has been pressed for this layer
// XXX Regardless of whether a key is found, the latch is removed on first lookup
uint8_t latch = LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x02;
if ( latch && latch_expire )
{
Macro_layerState( 0, 0, macroLayerIndexStack[ layerIndex ], 0x02 );
}
// Only use layer, if state is valid
// XOR each of the state bits
// If only two are enabled, do not use this state
if ( (LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x01) ^ (latch>>1) ^ ((LayerState[ macroLayerIndexStack[ layerIndex ] ] & 0x04)>>2) )
{
// Lookup layer
nat_ptr_t **map = (nat_ptr_t**)layer->triggerMap;
// Determine if layer has key defined
// Make sure scanCode is between layer first and last scancodes
if ( map != 0
&& scanCode <= layer->last
&& scanCode >= layer->first
&& *map[ scanCode - layer->first ] != 0 )
{
// Set the layer cache
macroTriggerListLayerCache[ scanCode ] = macroLayerIndexStack[ layerIndex ];
return map[ scanCode - layer->first ];
}
}
}
// Do lookup on default layer
nat_ptr_t **map = (nat_ptr_t**)LayerIndex[0].triggerMap;
// Lookup default layer
const Layer *layer = &LayerIndex[0];
// Make sure scanCode is between layer first and last scancodes
if ( map != 0
&& scanCode <= layer->last
&& scanCode >= layer->first
&& *map[ scanCode - layer->first ] != 0 )
{
// Set the layer cache to default map
macroTriggerListLayerCache[ scanCode ] = 0;
return map[ scanCode - layer->first ];
}
// Otherwise no defined Trigger Macro
erro_msg("Scan Code has no defined Trigger Macro: ");
printHex( scanCode );
print( NL );
return 0;
2014-06-14 18:00:29 +00:00
}
// Add an interconnect ScanCode
// These are handled differently (less information is sent, hold/off states must be assumed)
#if defined(ConnectEnabled_define) || defined(PressReleaseCache_define)
void Macro_pressReleaseAdd( void *trigger_ptr )
{
TriggerGuide *trigger = (TriggerGuide*)trigger_ptr;
// Error checking
uint8_t error = 0;
switch ( trigger->type )
{
case 0x00: // Normal key
switch ( trigger->state )
{
case 0x00:
case 0x01:
case 0x02:
case 0x03:
break;
default:
erro_msg("Invalid key state - ");
error = 1;
break;
}
break;
// Invalid TriggerGuide type
default:
erro_msg("Invalid type - ");
error = 1;
break;
}
// Check if ScanCode is out of range
2015-08-16 22:53:07 +00:00
if ( trigger->scanCode > MaxScanCode )
{
warn_msg("ScanCode is out of range/not defined - ");
error = 1;
}
// Display TriggerGuide
if ( error )
{
printHex( trigger->type );
print(" ");
printHex( trigger->state );
print(" ");
printHex( trigger->scanCode );
print( NL );
return;
}
// Add trigger to the Interconnect Cache
// During each processing loop, a scancode may be re-added depending on it's state
for ( var_uint_t c = 0; c < macroInterconnectCacheSize; c++ )
{
// Check if the same ScanCode
if ( macroInterconnectCache[ c ].scanCode == trigger->scanCode )
{
// Update the state
macroInterconnectCache[ c ].state = trigger->state;
return;
}
}
// If not in the list, add it
macroInterconnectCache[ macroInterconnectCacheSize++ ] = *trigger;
}
#endif
// Update the scancode key state
// States:
// * 0x00 - Off
// * 0x01 - Pressed
// * 0x02 - Held
// * 0x03 - Released
// * 0x04 - Unpressed (this is currently ignored)
inline void Macro_keyState( uint8_t scanCode, uint8_t state )
2014-06-14 18:00:29 +00:00
{
#if defined(ConnectEnabled_define)
// Only compile in if a Connect node module is available
if ( !Connect_master )
{
// ScanCodes are only added if there was a state change (on/off)
switch ( state )
{
case 0x00: // Off
case 0x02: // Held
return;
}
}
#endif
// Only add to macro trigger list if one of three states
switch ( state )
{
case 0x01: // Pressed
case 0x02: // Held
case 0x03: // Released
// Check if ScanCode is out of range
if ( scanCode > MaxScanCode )
{
warn_msg("ScanCode is out of range/not defined: ");
printHex( scanCode );
print( NL );
return;
}
macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode;
macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state;
macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x00; // Normal key
macroTriggerListBufferSize++;
break;
}
2014-06-14 18:00:29 +00:00
}
// Update the scancode analog state
// States:
// * 0x00 - Off
// * 0x01 - Released
// * 0x02-0xFF - Analog value (low to high)
inline void Macro_analogState( uint8_t scanCode, uint8_t state )
{
// Only add to macro trigger list if non-off
// TODO Handle change for interconnect
if ( state != 0x00 )
{
// Check if ScanCode is out of range
if ( scanCode > MaxScanCode )
{
warn_msg("ScanCode is out of range/not defined: ");
printHex( scanCode );
print( NL );
return;
}
macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = scanCode;
macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state;
macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x02; // Analog key
macroTriggerListBufferSize++;
}
}
2014-06-14 18:00:29 +00:00
// Update led state
// States:
// * 0x00 - Off
// * 0x01 - On
inline void Macro_ledState( uint8_t ledCode, uint8_t state )
{
// Only add to macro trigger list if non-off
// TODO Handle change for interconnect
if ( state != 0x00 )
{
// Check if LedCode is out of range
// TODO
macroTriggerListBuffer[ macroTriggerListBufferSize ].scanCode = ledCode;
macroTriggerListBuffer[ macroTriggerListBufferSize ].state = state;
macroTriggerListBuffer[ macroTriggerListBufferSize ].type = 0x01; // LED key
macroTriggerListBufferSize++;
}
}
2014-06-14 18:00:29 +00:00
// Append result macro to pending list, checking for duplicates
// Do nothing if duplicate
void Macro_appendResultMacroToPendingList( const TriggerMacro *triggerMacro )
{
// Lookup result macro index
var_uint_t resultMacroIndex = triggerMacro->result;
// Iterate through result macro pending list, making sure this macro hasn't been added yet
for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ )
{
// If duplicate found, do nothing
if ( macroResultMacroPendingList[ macro ] == resultMacroIndex )
return;
}
// No duplicates found, add to pending list
macroResultMacroPendingList[ macroResultMacroPendingListSize++ ] = resultMacroIndex;
// Lookup scanCode of the last key in the last combo
var_uint_t pos = 0;
for ( uint8_t comboLength = triggerMacro->guide[0]; comboLength > 0; )
{
pos += TriggerGuideSize * comboLength + 1;
comboLength = triggerMacro->guide[ pos ];
}
uint8_t scanCode = ((TriggerGuide*)&triggerMacro->guide[ pos - TriggerGuideSize ])->scanCode;
// Lookup scanCode in buffer list for the current state and stateType
for ( var_uint_t keyIndex = 0; keyIndex < macroTriggerListBufferSize; keyIndex++ )
{
if ( macroTriggerListBuffer[ keyIndex ].scanCode == scanCode )
{
ResultMacroRecordList[ resultMacroIndex ].state = macroTriggerListBuffer[ keyIndex ].state;
ResultMacroRecordList[ resultMacroIndex ].stateType = macroTriggerListBuffer[ keyIndex ].type;
}
}
// Reset the macro position
ResultMacroRecordList[ resultMacroIndex ].pos = 0;
}
// Block any of the keys that may be in the buffer
// These keys may not be pressed during the processing loop, but block them anyways
// See Macro_blockUSBKey_capability for more details on usage
inline void Macro_processKeyBlocking()
{
// Iterate over list of USB keys
for ( uint8_t key = 0; key < Macro_maxBlockCount_define; key++ )
{
// This capability will always unset (doesn't toggle)
// First we need to generate the argument
uint8_t args[] = { macroHidBlockList[ key ] };
// XXX Only handles normal keys (no analog, yet)
// 0x03 is release, which always unsets a key from the USB buffer, even if it's not there
Output_usbCodeSend_capability( 0x03, 0x00, args );
}
}
// Macro Procesing Loop
// Called once per USB buffer send
inline void Macro_process()
{
#if defined(ConnectEnabled_define)
// Only compile in if a Connect node module is available
// If this is a interconnect slave node, send all scancodes to master node
if ( !Connect_master )
{
if ( macroTriggerListBufferSize > 0 )
{
Connect_send_ScanCode( Connect_id, macroTriggerListBuffer, macroTriggerListBufferSize );
macroTriggerListBufferSize = 0;
}
return;
}
#endif
// Only do one round of macro processing between Output Module timer sends
if ( USBKeys_Sent != 0 )
return;
#if defined(ConnectEnabled_define) || defined(PressReleaseCache_define)
#if defined(ConnectEnabled_define)
// Check if there are any ScanCodes in the interconnect cache to process
if ( Connect_master && macroInterconnectCacheSize > 0 )
#endif
{
// Iterate over all the cache ScanCodes
uint8_t currentInterconnectCacheSize = macroInterconnectCacheSize;
macroInterconnectCacheSize = 0;
for ( uint8_t c = 0; c < currentInterconnectCacheSize; c++ )
{
// Add to the trigger list
macroTriggerListBuffer[ macroTriggerListBufferSize++ ] = macroInterconnectCache[ c ];
// TODO Handle other TriggerGuide types (e.g. analog)
switch ( macroInterconnectCache[ c ].type )
{
// Normal (Press/Hold/Release)
case 0x00:
// Decide what to do based on the current state
switch ( macroInterconnectCache[ c ].state )
{
// Re-add to interconnect cache in hold state
case 0x01: // Press
//case 0x02: // Hold // XXX Why does this not work? -HaaTa
macroInterconnectCache[ c ].state = 0x02;
macroInterconnectCache[ macroInterconnectCacheSize++ ] = macroInterconnectCache[ c ];
break;
case 0x03: // Remove
break;
// Otherwise, do not re-add
}
}
}
}
#endif
// If the pause flag is set, only process if the step counter is non-zero
if ( macroPauseMode )
{
if ( macroStepCounter == 0 )
return;
// Proceed, decrementing the step counter
macroStepCounter--;
dbug_print("Macro Step");
}
// Process Trigger Macros
Trigger_process();
// Process result macros
Result_process();
// Process Key Blocking
Macro_processKeyBlocking();
// Signal buffer that we've used it
Scan_finishedWithMacro( macroTriggerListBufferSize );
// Reset TriggerList buffer
macroTriggerListBufferSize = 0;
// If Macro debug mode is set, clear the USB Buffer
if ( macroDebugMode )
{
USBKeys_Modifiers = 0;
USBKeys_Sent = 0;
}
}
inline void Macro_setup()
{
// Register Macro CLI dictionary
CLI_registerDictionary( macroCLIDict, macroCLIDictName );
// Disable Macro debug mode
macroDebugMode = 0;
// Disable Macro pause flag
macroPauseMode = 0;
// Set Macro step counter to zero
macroStepCounter = 0;
// Make sure macro trigger buffer is empty
macroTriggerListBufferSize = 0;
// Set the current rotated layer to 0
Macro_rotationLayer = 0;
// Setup Triggers
Trigger_setup();
// Setup Results
Result_setup();
}
// ----- CLI Command Functions -----
void cliFunc_capList( char* args )
{
print( NL );
2015-01-25 20:49:23 +00:00
info_msg("Capabilities List ");
printHex( CapabilitiesNum );
// Iterate through all of the capabilities and display them
for ( var_uint_t cap = 0; cap < CapabilitiesNum; cap++ )
{
print( NL "\t" );
printHex( cap );
print(" - ");
// Display/Lookup Capability Name (utilize debug mode of capability)
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func);
capability( 0xFF, 0xFF, 0 );
}
}
void cliFunc_capSelect( char* args )
{
// Parse code from argument
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Total number of args to scan (must do a lookup if a keyboard capability is selected)
var_uint_t totalArgs = 2; // Always at least two args
var_uint_t cap = 0;
// Arguments used for keyboard capability function
var_uint_t argSetCount = 0;
uint8_t *argSet = (uint8_t*)args;
// Process all args
for ( var_uint_t c = 0; argSetCount < totalArgs; c++ )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
// Extra arguments are ignored
if ( *arg1Ptr == '\0' )
break;
// For the first argument, choose the capability
if ( c == 0 ) switch ( arg1Ptr[0] )
{
// Keyboard Capability
case 'K':
// Determine capability index
cap = numToInt( &arg1Ptr[1] );
// Lookup the number of args
totalArgs += CapabilitiesList[ cap ].argCount;
continue;
}
// Because allocating memory isn't doable, and the argument count is arbitrary
// The argument pointer is repurposed as the argument list (much smaller anyways)
argSet[ argSetCount++ ] = (uint8_t)numToInt( arg1Ptr );
// Once all the arguments are prepared, call the keyboard capability function
if ( argSetCount == totalArgs )
{
// Indicate that the capability was called
print( NL );
info_msg("K");
printInt8( cap );
print(" - ");
printHex( argSet[0] );
print(" - ");
printHex( argSet[1] );
print(" - ");
printHex( argSet[2] );
print( "..." NL );
// Make sure this isn't the reload capability
// If it is, and the remote reflash define is not set, ignore
if ( flashModeEnabled_define == 0 ) for ( uint32_t cap = 0; cap < CapabilitiesNum; cap++ )
{
if ( CapabilitiesList[ cap ].func == (const void*)Output_flashMode_capability )
{
print( NL );
warn_print("flashModeEnabled not set, cancelling firmware reload...");
info_msg("Set flashModeEnabled to 1 in your kll configuration.");
return;
}
}
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ cap ].func);
capability( argSet[0], argSet[1], &argSet[2] );
}
}
}
void cliFunc_keyHold( char* args )
{
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore non-Scancode numbers
switch ( arg1Ptr[0] )
{
// Scancode
case 'S':
Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x02 ); // Hold scancode
break;
}
}
}
void cliFunc_keyPress( char* args )
{
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore non-Scancode numbers
switch ( arg1Ptr[0] )
{
// Scancode
case 'S':
Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x01 ); // Press scancode
break;
}
}
}
void cliFunc_keyRelease( char* args )
{
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore non-Scancode numbers
switch ( arg1Ptr[0] )
{
// Scancode
case 'S':
Macro_keyState( (uint8_t)numToInt( &arg1Ptr[1] ), 0x03 ); // Release scancode
break;
}
}
}
void cliFunc_layerDebug( char *args )
{
// Toggle layer debug mode
layerDebugMode = layerDebugMode ? 0 : 1;
print( NL );
info_msg("Layer Debug Mode: ");
printInt8( layerDebugMode );
}
void cliFunc_layerList( char* args )
{
print( NL );
info_msg("Layer List");
// Iterate through all of the layers and display them
for ( uint16_t layer = 0; layer < LayerNum; layer++ )
{
print( NL "\t" );
printHex( layer );
print(" - ");
// Display layer name
dPrint( (char*)LayerIndex[ layer ].name );
// Default map
if ( layer == 0 )
print(" \033[1m(default)\033[0m");
// Layer State
print( NL "\t\t Layer State: " );
printHex( LayerState[ layer ] );
// First -> Last Indices
print(" First -> Last Indices: ");
printHex( LayerIndex[ layer ].first );
print(" -> ");
printHex( LayerIndex[ layer ].last );
}
}
void cliFunc_layerState( char* args )
{
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
uint8_t arg1 = 0;
uint8_t arg2 = 0;
// Process first two args
for ( uint8_t c = 0; c < 2; c++ )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
switch ( c )
{
// First argument (e.g. L1)
case 0:
if ( arg1Ptr[0] != 'L' )
return;
arg1 = (uint8_t)numToInt( &arg1Ptr[1] );
break;
// Second argument (e.g. 4)
case 1:
arg2 = (uint8_t)numToInt( arg1Ptr );
// Display operation (to indicate that it worked)
print( NL );
info_msg("Setting Layer L");
printInt8( arg1 );
print(" to - ");
printHex( arg2 );
// Set the layer state
LayerState[ arg1 ] = arg2;
break;
}
}
}
void cliFunc_macroDebug( char* args )
{
// Toggle macro debug mode
macroDebugMode = macroDebugMode ? 0 : 1;
print( NL );
info_msg("Macro Debug Mode: ");
printInt8( macroDebugMode );
}
void cliFunc_macroList( char* args )
{
// Show pending key events
print( NL );
info_msg("Pending Key Events: ");
printInt16( (uint16_t)macroTriggerListBufferSize );
print(" : ");
for ( var_uint_t key = 0; key < macroTriggerListBufferSize; key++ )
{
printHex( macroTriggerListBuffer[ key ].scanCode );
print(" ");
}
// Show pending trigger macros
print( NL );
info_msg("Pending Trigger Macros: ");
printInt16( (uint16_t)macroTriggerMacroPendingListSize );
print(" : ");
for ( var_uint_t macro = 0; macro < macroTriggerMacroPendingListSize; macro++ )
{
printHex( macroTriggerMacroPendingList[ macro ] );
print(" ");
}
// Show pending result macros
print( NL );
info_msg("Pending Result Macros: ");
printInt16( (uint16_t)macroResultMacroPendingListSize );
print(" : ");
for ( var_uint_t macro = 0; macro < macroResultMacroPendingListSize; macro++ )
{
printHex( macroResultMacroPendingList[ macro ] );
print(" ");
}
// Show available trigger macro indices
print( NL );
info_msg("Trigger Macros Range: T0 -> T");
printInt16( (uint16_t)TriggerMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit)
// Show available result macro indices
print( NL );
info_msg("Result Macros Range: R0 -> R");
printInt16( (uint16_t)ResultMacroNum - 1 ); // Hopefully large enough :P (can't assume 32-bit)
// Show Trigger to Result Macro Links
print( NL );
info_msg("Trigger : Result Macro Pairs");
for ( var_uint_t macro = 0; macro < TriggerMacroNum; macro++ )
{
print( NL );
print("\tT");
printInt16( (uint16_t)macro ); // Hopefully large enough :P (can't assume 32-bit)
print(" : R");
printInt16( (uint16_t)TriggerMacroList[ macro ].result ); // Hopefully large enough :P (can't assume 32-bit)
}
}
void cliFunc_macroProc( char* args )
{
// Toggle macro pause mode
macroPauseMode = macroPauseMode ? 0 : 1;
print( NL );
info_msg("Macro Processing Mode: ");
printInt8( macroPauseMode );
}
void macroDebugShowTrigger( var_uint_t index )
{
// Only proceed if the macro exists
if ( index >= TriggerMacroNum )
return;
// Trigger Macro Show
const TriggerMacro *macro = &TriggerMacroList[ index ];
TriggerMacroRecord *record = &TriggerMacroRecordList[ index ];
print( NL );
info_msg("Trigger Macro Index: ");
printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit)
print( NL );
// Read the comboLength for combo in the sequence (sequence of combos)
var_uint_t pos = 0;
uint8_t comboLength = macro->guide[ pos ];
// Iterate through and interpret the guide
while ( comboLength != 0 )
{
// Initial position of the combo
var_uint_t comboPos = ++pos;
// Iterate through the combo
while ( pos < comboLength * TriggerGuideSize + comboPos )
{
// Assign TriggerGuide element (key type, state and scancode)
TriggerGuide *guide = (TriggerGuide*)(&macro->guide[ pos ]);
// Display guide information about trigger key
printHex( guide->scanCode );
print("|");
printHex( guide->type );
print("|");
printHex( guide->state );
// Increment position
pos += TriggerGuideSize;
// Only show combo separator if there are combos left in the sequence element
if ( pos < comboLength * TriggerGuideSize + comboPos )
print("+");
}
// Read the next comboLength
comboLength = macro->guide[ pos ];
// Only show sequence separator if there is another combo to process
if ( comboLength != 0 )
print(";");
}
// Display current position
print( NL "Position: " );
printInt16( (uint16_t)record->pos ); // Hopefully large enough :P (can't assume 32-bit)
// Display result macro index
print( NL "Result Macro Index: " );
printInt16( (uint16_t)macro->result ); // Hopefully large enough :P (can't assume 32-bit)
// Display trigger macro state
print( NL "Trigger Macro State: " );
switch ( record->state )
{
case TriggerMacro_Press: print("Press"); break;
case TriggerMacro_Release: print("Release"); break;
case TriggerMacro_Waiting: print("Waiting"); break;
}
}
void macroDebugShowResult( var_uint_t index )
{
// Only proceed if the macro exists
if ( index >= ResultMacroNum )
return;
// Trigger Macro Show
const ResultMacro *macro = &ResultMacroList[ index ];
ResultMacroRecord *record = &ResultMacroRecordList[ index ];
print( NL );
info_msg("Result Macro Index: ");
printInt16( (uint16_t)index ); // Hopefully large enough :P (can't assume 32-bit)
print( NL );
// Read the comboLength for combo in the sequence (sequence of combos)
var_uint_t pos = 0;
uint8_t comboLength = macro->guide[ pos++ ];
// Iterate through and interpret the guide
while ( comboLength != 0 )
{
// Function Counter, used to keep track of the combos processed
var_uint_t funcCount = 0;
// Iterate through the combo
while ( funcCount < comboLength )
{
// Assign TriggerGuide element (key type, state and scancode)
ResultGuide *guide = (ResultGuide*)(&macro->guide[ pos ]);
// Display Function Index
printHex( guide->index );
print("|");
// Display Function Ptr Address
printHex( (nat_ptr_t)CapabilitiesList[ guide->index ].func );
print("|");
// Display/Lookup Capability Name (utilize debug mode of capability)
void (*capability)(uint8_t, uint8_t, uint8_t*) = (void(*)(uint8_t, uint8_t, uint8_t*))(CapabilitiesList[ guide->index ].func);
capability( 0xFF, 0xFF, 0 );
// Display Argument(s)
print("(");
for ( var_uint_t arg = 0; arg < CapabilitiesList[ guide->index ].argCount; arg++ )
{
// Arguments are only 8 bit values
printHex( (&guide->args)[ arg ] );
// Only show arg separator if there are args left
if ( arg + 1 < CapabilitiesList[ guide->index ].argCount )
print(",");
}
print(")");
// Increment position
pos += ResultGuideSize( guide );
// Increment function count
funcCount++;
// Only show combo separator if there are combos left in the sequence element
if ( funcCount < comboLength )
print("+");
}
// Read the next comboLength
comboLength = macro->guide[ pos++ ];
// Only show sequence separator if there is another combo to process
if ( comboLength != 0 )
print(";");
}
// Display current position
print( NL "Position: " );
printInt16( (uint16_t)record->pos ); // Hopefully large enough :P (can't assume 32-bit)
// Display final trigger state/type
print( NL "Final Trigger State (State/Type): " );
printHex( record->state );
print("/");
printHex( record->stateType );
}
void cliFunc_macroShow( char* args )
{
// Parse codes from arguments
char* curArgs;
char* arg1Ptr;
char* arg2Ptr = args;
// Process all args
for ( ;; )
{
curArgs = arg2Ptr;
CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );
// Stop processing args if no more are found
if ( *arg1Ptr == '\0' )
break;
// Ignore invalid codes
switch ( arg1Ptr[0] )
{
// Indexed Trigger Macro
case 'T':
macroDebugShowTrigger( numToInt( &arg1Ptr[1] ) );
break;
// Indexed Result Macro
case 'R':
macroDebugShowResult( numToInt( &arg1Ptr[1] ) );
break;
}
}
}
void cliFunc_macroStep( char* args )
{
// Parse number from argument
// NOTE: Only first argument is used
char* arg1Ptr;
char* arg2Ptr;
CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );
// Default to 1, if no argument given
var_uint_t count = (var_uint_t)numToInt( arg1Ptr );
if ( count == 0 )
count = 1;
// Set the macro step counter, negative int's are cast to uint
macroStepCounter = count;
}